

ENABLING INTRUSION DETECTION IN IPSEC PROTECTED IPV6
NETWORKS THROUGH SECRET-KEY SHARING

THESIS

Patrick J. Sweeney, Captain, USAF

AFIT/GCE/ENG/05-06

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the U.S.

Government.

AFIT/GCE/ENG/05-06

ENABLING INTRUSION DETECTION IN IPSEC PROTECTED IPV6
NETWORKS THROUGH SECRET-KEY SHARING

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Patrick J. Sweeney, BS

Captain, USAF

March 2005

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GCE/ENG/05-06

ENABLING INTRUSION DETECTION IN IPSEC PROTECTED IPV6
NETWORKS THROUGH SECRET-KEY SHARING

Patrick J. Sweeney, BS

Captain, USAF

Approved:

 /signed/ 7 Mar 2005
____________________________________ ________
Dr. Richard A. Raines Date
Thesis Advisor

 /signed/ 7 Mar 2005
____________________________________ ________
Dr. Michael A. Temple Date
Committee Member

 /signed/ 4 Mar 2005
____________________________________ ________
Dr. Rusty O. Baldwin Date
Committee Member

 /signed/ 4 Mar 2005
____________________________________ ________
Dr. Barry E. Mullins Date
Committee Member

v

Acknowledgments

I would like to express my appreciation to my thesis advisor, Dr. Richard Raines,

for his constant support and insightful comments, even after I changed topics away from

his specialty. Thank you for being open minded with my ideas, and shaping them into a

useful research effort. To Dr. Rusty Baldwin, thank you for helping me figure out how to

accomplish my goals, and for the guidance on statistics and performance analysis. To Dr.

Temple, credit is given where it’s due—the number was 12. Thanks for making me get

my data representation in order. For Dr. Mullins, good luck with this group. Overall,

thanks for making this thesis as painless as possible.

 Thanks to Capt Dave Chaboya, for helping find all the mistakes in my code, and

keeping me motivated by always staying one step ahead of me in the thesis process… if

only I can get this to the Kinko’s first, I win!

Finally, thank you to my wife, who put up with all the late homework nights,

whining, and nerd-talk without (much) complaint.

 Patrick J. Sweeney

vi

Table of Contents

Page

Acknowledgments..v

Table of Contents... vi

List of Figures ..x

List of Tables .. xii

Abstract .. xiii

1 Introduction ..1

1.1 Background ...1

1.2 Problem Definition..3

1.2.1 Goals and Hypothesis .. 3

1.2.2 Approach.. 4

1.3 Summary ...4

2 Background/Literature Review ..6

2.1 Introduction ...6

2.2 Internet Protocol Version 6 (IPv6) Basics...6

2.3 Authentication Header and Encapsulating Security Payload Header10

2.4 Security Association Databases and Security Protocol Databases....................13

2.5 Limitations Posed Upon Network-based Intrusion Detection Systems14

2.6 Problems to be Addressed ...16

2.6.1 Internet Key Exchange (IKE) .. 17

2.6.2 Encryption.. 19

2.7 Relevant Research ...20

2.8 Summary ...22

vii

3 Methodology ..23

3.1 Introduction ...23

3.2 System Boundaries..23

3.3 System Services..25

3.4 Workload...25

3.5 Performance Metrics ..26

3.6 Parameters ...27

3.6.1 System Parameters .. 27

3.6.2 Workload Parameters... 28

3.7 Factors ...29

3.7.1 Percentage Encrypted Traffic .. 29

3.7.2 Payload Size.. 30

3.7.3 Network Configuration ... 31

3.7.4 Key Method .. 32

3.7.5 Phase 2 Key Expiration Time ... 32

3.8 Test Bed Setup ..33

3.8.1 Physical Setup... 33

3.8.2 IPv6 / IPSec Setup .. 34

3.8.3 racoon and racoon2 ... 37

3.8.4 v6listen ... 37

3.8.5 server.. 37

3.8.6 attacknet and attackclient .. 39

3.9 Evaluation Technique..41

viii

3.10 Experimental Design..43

3.11 Experimental Design for Results Analysis and Interpretation.......................44

3.12 Summary ...45

4 Analysis ..46

4.1 Introduction ...46

4.2 Data Collection and Analysis Methods...46

4.3 Throughput and Goodput Rates ..47

4.4 Attack Detection Rates, Dropped Packets, and Undecryptable Packets55

4.5 IDS Related Traffic ...58

4.6 IDS CPU Utilization..60

4.7 Limitations ..68

4.7.1 VMWare .. 68

4.7.2 Throughput... 68

4.8 Summary ...69

5 Conclusions ..70

5.1 Research Contribution...70

5.2 Conclusions ...70

5.3 Future Research Ideas ...72

5.3.1 Key solicitation .. 72

5.3.2 Higher Throughput and More Hosts .. 72

5.3.3 Include Different Operating Systems... 73

5.3.4 Involve a Cryptographic Coprocessor ... 73

5.3.5 Possible Improvements to server, racoon2, and the General Framework... 73

ix

5.3.6 Real-World IDS Integration... 74

Appendix A: Experiment Listing...75

Appendix B: Availability of Source Code and Configuration Files, and Data..................78

Bibliography ..79

x

List of Figures

Page

Figure 2.1: IPv4 Header.. 8

Figure 2.2: IPv6 Header.. 8

Figure 2.3: Authentication Header (AH) .. 10

Figure 2.4: Encapsulating Security Payload (ESP) Header .. 11

Figure 2.5: ESP Header Chain .. 12

Figure 2.6: ESP Packet in Tunnel Mode... 12

Figure 3.1: System Under Test ... 24

Figure 3.2: Network Configurations ... 32

Figure 3.3: server Functionality... 38

Figure 4.1: Mean Throughput for Experiments with Large Attack Payloads................... 48

Figure 4.2: Mean Throughput for Experiments with Mixed Attack Payloads 48

Figure 4.3: Mean Throughput for Experiments with Small Attack Payloads................... 49

Figure 4.4: Ratio of Mean Goodput to Mean Throughput for Experiments with Large

Attack Payloads.. 52

Figure 4.5: Ratio of Mean Goodput to Mean Throughput for Experiments with Mixed

Attack Payloads.. 52

Figure 4.6: Ratio of Mean Goodput to Mean Throughput for Experiments with Small

Attack Payloads.. 53

Figure 4.7: Percentage of IDS Related Traffic for Experiments with Large Attack

Payloads ... 58

xi

Figure 4.8: Percentage of IDS Related Traffic for Experiments with Mixed Attack

Payloads ... 59

Figure 4.9: Percentage of IDS Related Traffic for Experiments with Small Attack

Payloads ... 59

Figure 4.10: Mean IDS CPU Utilization for Experiments with Large Attack Payloads .. 61

Figure 4.11: Mean IDS CPU Utilization for Experiments with Mixed Attack Payloads . 62

Figure 4.12: Mean IDS CPU Utilization for Experiments with Small Attack Payloads .. 62

Figure 4.13: Mean IDS CPU Utilization for Experiments with Large Attack Payloads,

Including 95% Confidence Interval ... 63

Figure 4.14: Mean IDS CPU Utilization for Experiments with Mixed Attack Payloads,

Including 95% Confidence Interval ... 64

Figure 4.15: Mean IDS CPU Utilization for Experiments with Small Attack Payloads,

Including 95% Confidence Interval ... 64

xii

List of Tables

Page

Table 3.1: Inter-burst and Inter-Packet Wait Times ... 29

Table 3.2: Factors and Levels ... 30

Table 3.3: Packet Size Statistical Mix .. 31

Table 3.4: Computer Configuration.. 33

Table 3.5: Validation Tests ... 42

Table 3.6: Experiment List ... 43

Table 3.7: usleep/new_usleep Comparison... 44

Table 4.1 Percentages of Comparisons Showing Statistical Differences with 95%

Confidence, Specific to Variation in a Particular Factor ... 50

Table 4.2: Analysis of Variance for Throughput .. 54

Table 4.3: Attack Detection Related Statistics ... 56

Table 4.4: Analysis of Variance for IDS CPU Utilization.. 66

xiii

AFIT/GCE/ENG/05-06

Abstract

As the Internet Protocol version 6 (IPv6) implementation becomes more

widespread, the IP Security (IPSec) features embedded into the next-generation protocol

will become more accessible than ever. Though the network-layer encryption provided

by IPSec is a boon to data security, its use renders standard network intrusion detection

systems (NIDS) useless. The problem of performing intrusion detection on encrypted

traffic has been addressed by differing means with each technique requiring one or more

static secret keys to be shared with the NIDS beforehand. The problem with this

approach is static keying is much less secure than dynamic key generation through the

Internet Key Exchange (IKE) protocol.

This research creates and evaluates a secret-key sharing framework which allows

both the added security of dynamic IPSec key generation through IKE, and intrusion

detection capability for a NIDS on the network. Analysis shows that network traffic

related to secret-key sharing with the proposed framework can account for up to 58.6% of

total traffic in the worst case scenario, though workloads which are arguably more

average decrease that traffic to 10-15%. Additionally, actions associated with IKE and

secret-key sharing increase CPU utilization on the NIDS up to 20.7%. Results show, at

least in limited implementations, a secret-key sharing framework provides robust

coverage and is a viable intrusion detection option.

1

ENABLING INTRUSION DETECTION IN IPSEC PROTECTED IPV6
NETWORKS THROUGH SECRET-KEY SHARING

1 Introduction

1.1 Background

Network security is a topic of much interest. Incidents involving malicious code

such as the Blaster and Code Red worms demonstrate skilled hackers are capable of

causing havoc on systems and networks. This, coupled with the fact that Microsoft

published 45 security bulletins in 2004, shows there are plenty of vulnerabilities to be

exploited in the most prevalent operating systems on the Internet [Mic04]. Many tools,

from firewalls to virus scanners, have been developed to aid in network security. An

increasingly common method for protecting a network is an Intrusion Detection System

(IDS). IDSs come in a variety of types, most notably host-based IDS (HIDS) and

network-based IDS (NIDS). HIDS are installed on individual network hosts, as the name

suggests, and traditionally examine log files and system registries on the host to

determine if an intrusion attempt is underway or has taken place. NIDS, on the other

hand, monitor network traffic by examining packets on the network for signs of attack, or

attack signatures. Misuse-based NIDS perform pattern matching on Ethernet packets,

whereas Anomaly-based NIDS try to determine what “normal” network activity is, and

alert operators of any deviations from that model. The former is currently more

prevalent.

2

Although a “defense in depth” approach is a sound security principle, if a choice

must be made between a HIDS or NIDS, often a NIDS is selected. This one appliance or

software suite protects an entire subnet and is generally easier to manage than numerous

HIDSs. A widely acknowledged shortcoming of a NIDS, however, is it cannot examine

encrypted traffic [Tri03, Shi02, Fed04, Tay02]. Without the ability to decrypt traffic, the

NIDS cannot perform pattern matching for attack signatures. While there are ways to

work with encrypted traffic for specialized circumstances, such as Secure Socket Layers

and HTTPS traffic [Mca04], those forms of data protection don’t provide as broad a

coverage as IPSec which operates at the network layer.

The problem is exacerbated by the advent of Internet Protocol version 6 (IPv6)

[Tri03]. This next-generation IP protocol is currently in the implementation phase in

many Asian countries, and will replace IPv4 globally in the near future. IPv6 is touted as

being more secure, as it natively supports the Authentication Header (AH) and

Encapsulating Security Payload (ESP) header which are available to IPv4 by using IPSec

[War03]. ESP provides network layer encryption which can be applied to all IP traffic

traveling to or from a host. This provides a great deal of security benefit for legitimate

traffic, but it has the side effect of allowing malicious traffic to be encrypted as well,

denying a NIDS the ability of detecting the attack.

This research creates a secret-key sharing framework enabling a host on an IPv6

network with ESP encryption to decrypt network traffic and send it to a NIDS engine for

attack detection. The performance of the system is analyzed across a range of encryption

types and traffic loads.

3

1.2 Problem Definition

1.2.1 Goals and Hypothesis The goals of this research are straightforward. Since

NIDSs are currently limited to non-encrypted environments, the overarching purpose is to

find a way around that limitation. The first specific goal is to create and implement a

secret-key sharing method which allows decryption of network traffic and passing of the

same to an intrusion detection engine in the clear. The ability of the system to detect

individual attacks is evaluated through empirical testing.

The second goal is to examine traffic patterns generated by providing workloads

which vary in the percentage of encrypted traffic and attack payload size. Response to

the workloads is studied in scenarios with different network configurations and different

keying methods.

The third and final goal compares the performance of the physical IDS host in an

IPSec encrypted environment utilizing static keys versus dynamic keys with varying key

expiration times. More explicitly, the goal determines how well the secret-key sharing

framework enables attack detection on the encrypted traffic by examining the CPU

utilization of the computer hosting the IDS. The intrusion detection engine itself acts

independent of the framework (although on the same physical host), and is presented

clear text data either directly or after decryption by the framework. The likely result is

that detection will be hampered by a significant increase in computation required to

decrypt the traffic. The comparisons, however, will provide some insight into whether

such IDS are feasible in high throughput networks.

4

Overall, the expectation is a minimal-overhead framework can be developed for

secret-key sharing, enabling attack detection on encrypted traffic. The hypothesis is the

decryption bottleneck, even in a subnet of limited size, occupies a high enough

percentage of CPU cycles on the IDS host as to make the impact of secret-key sharing

negligible, lending credence to the idea that a dynamic keying with a secret-key sharing

framework is a viable option to static keying.

1.2.2 Approach To accomplish the goals of the research, the secret-key sharing

framework is developed. This framework transfers keys from a host to the IDS interface

whenever a new key is generated. In addition, it receives keys on the IDS interface,

decodes and decrypts Ethernet packets, and passes clear text data to the intrusion

detection engine. This is accomplished through modification of an open-source Internet

Key Exchange (IKE) implementation, as well as generation of some custom software for

the decryption interface.

With the secret-key sharing framework in place, the second and third goals are

addressed by subjecting the framework to various factor levels and observing the

responses. When all experiments are complete, trends are examined and compared to the

hypothesis.

1.3 Summary

This thesis contains four additional chapters. Chapter 2 discusses background

information pertinent to the experiments, and the current state of research in the areas of

IPv6 and intrusion detection for encrypted traffic. Chapter 3 describes the experimental

5

methodology, and Chapter 4 presents the data and analysis resultant from the

experiments. Finally, Chapter 5 presents a the conclusions of the research and explores

ideas for future work.

6

2 Background/Literature Review

2.1 Introduction

 This chapter presents an overview of the problems facing network security in light

of the implementation of IPv6, and explores concepts important to developing a secret-

key sharing framework and Intrusion Detection System (IDS) for an IPSec enabled IPv6

network. Section 2 describes details about IPv6, and how it differs from IPv4. Section 3

gives a more detailed look at the Authentication Header (AH) and Encapsulating Security

Payload (ESP) header built into IPv6. Section 4 provides information about the Security

Associations which support the AH and ESP headers, as well as the Security Association

Databases (SAD) and Security Policy Database (SPD). Section 5 looks at problems that

widespread use of the AH/ESP headers pose to Intrusion Detection Systems (IDS), and

Section 6 examines the issues that need to be addressed in order to overcome these

problems. Finally Section 7 looks at relevant research in the area.

2.2 Internet Protocol Version 6 (IPv6) Basics

IPv4 is an aging protocol. Perhaps the biggest motivation for the evolution to

IPv6 is the depletion of the limited address space provided by IPv4. An IPv4 address is

comprised of 32 bits that represent a network address. No matter how the available

address space is divided among different entities, it can only provide approximately 4

billion IP addresses. When IP was first implemented, Internet activity was dominated by

educational institutions, research centers, and other professional organizations. At that

7

time, the 4 billion addresses must have seemed more than sufficient. However, the

success of commercial forays on the Internet coupled with the amazing growth over the

last 20 years resulted in the address space reaching its limit.

This is especially true in countries other than the US. The US has a fairly high

percentage of IP addresses. For example US-based Level 3 Communications owns 3

Class A networks, which gives them a slightly larger address space than all of Asia

[Sch04]. For this reason, some countries such as Japan and Korea have mandated

implementation of IPv6 by 2005 [Emi02]. IPv6 will, first and foremost, alleviate the

address space problem. Rather than the 32-bit address provided by IPv4, IPv6 has a 128-

bit address, or approximately 2^128 = 3.40 * 1038 addresses.

Transition to IPv6 in the US is likely to be slower than some foreign countries,

since the US has enough IPv4 addresses to meet near-term needs. Techniques have been

developed which prolonged IPv4’s success despite the problems. For instance, Network

Address Translation (NAT) allows private subnetworks to be connected to the Internet

via one public IP address. Classless Inter-Domain Routing (CIDR) provides a more

efficient way to allocate IP addresses to organizations, rather than the allocation of only

class A, B, and C networks. However, the eventual adoption of IPv6 seems inevitable.

This is good given that, among other improvements, IPv6 has built-in authentication and

security mechanisms discussed in Section 2.3.

IPv6 improves on IPv4 by standardizing more of the IPv4 “options” and more

efficiently using these functions. Additionally, the IPv6 header is more space-efficient

than the IPv4 header, as shown in Figures 2.1 and 2.2. The IHL, type of service,

8

identification, flags, checksum, and options and padding fields were dropped for IPv6.

Even with an address four times longer, the header is only twice as large. The header

also provides greater flexibility. For instance, packet priority can be set via the Traffic

Class field so real-time applications like streaming video and audio can be given higher

priority.

Figure 2.1: IPv4 Header

Figure 2.2: IPv6 Header

9

The following describes the header fields of the IPv6 datagram [Jav04]:

• Version -- Internet Protocol Version number (IPv6 is 6).

• Traffic Class -- Traffic class field enables a source to identify the desired delivery
priority of the packets. Priority values are divided into ranges: traffic where the
source provides congestion control and non-congestion control traffic.

• Flow label -- Flow label is used by a source to label those products for which it
requests special handling by the IPv6 router. The flow is uniquely identified by
the combination of a source address and a non-zero flow label.

• Payload length -- The length of payload including header.

• Next header -- Identifies the type of header immediately following the IPv6
header.

• Hop limit -- It is decremented by one by each node that forwards the packet. The
packet is discarded if the Hop Limit is decremented to zero.

• Source address -- 128-bit address of the originator of the packet.

• Destination address -- 128-bit address of the intended recipient of the packet
(possibly not the ultimate recipient, if a Routing header is present).

Each header type is assigned a value in IPv6. The Next Header field indicates

what type of header is next in the chain by specifying its value. For example, a value of

‘50’ indicates the next header is an ESP header. The last extension header in the chain

indicates that payload data is next. Additionally, IPv6 headers can be an arbitrary length

and not limited to 40 bytes like IPv4. This allows options to be used for many new things

which were not possible or practical in IPv4, such as authentication and security

encapsulation discussed in the next section [DeH98].

10

2.3 Authentication Header and Encapsulating Security Payload Header

IPv6 has two significant security benefits, in the form of two extension headers.

The option to use these headers is available in IPv4 for a host running the Internet

Protocol Security (IPSec). However, these headers are integrated into IPv6 and are

expected will gain wider acceptance and usage as IPv6 becomes a world-wide standard.

The first benefit is the Authentication Header (AH), which provides data

authentication and integrity. Any data which has been tampered with en route, or

generated by a spoofing source can be detected. However the data might be read by an

unauthorized party [KeA98a]. This isn’t a threat to an IDS, which is not concerned with

authenticity of data, but rather its content.

Figure 2.3: Authentication Header (AH)

In these two headers shown in Figures 2.3 and 2.4, the security parameter index

(SPI) field enumerates a Security Association (SA) between sender and receiver. The SA

itself includes information indicating how the sender and receiver will encrypt and/or

authenticate their conversations. SAs are discussed in more detail in the next section

[KeA98a, KeA98b].

11

Figure 2.4: Encapsulating Security Payload (ESP) Header

The authentication data field varies in length, based upon the authentication

algorithm, and holds the authentication value computed by the sender. When a

destination receives an authenticated packet, it computes an authentication value in the

same way as the source, and then compares the two. If the two values match, then the

packet is considered authentic.

The ESP header has a few of the same fields as the AH header with a couple of

additions. The payload field typically contains the encrypted payload data, but can also

include information required for decryption. For example, encryption algorithms such as

Data Encryption Standard (DES) and Advanced Encryption Standard (AES) require an

initialization vector (IV) equal in size to the block size, which is placed in the payload

field prior to the encrypted data. The next header field indicates the type of payload

which is encrypted (i.e., 6 for TCP data, or some other number if there are destination

option headers included). The ESP header must be the header last in the chain as shown

in Figure 2.5 as it encrypts all data following it [KeA98b]. Finally, the padding field size

12

is variable in and used to pad the payload to a multiple of the encryption algorithm block

size.

Figure 2.5: ESP Header Chain

AH and ESP can be used in two modes, Transport Mode and Tunnel Mode which

are illustrated in Figures 2.5 and 2.6 respectively. Transport mode is generally

considered a host-to-host mode. The authentication and encryption security is applied to

data leaving one host, and is not removed until it reaches its destination. In this case,

ultimate source and destination addresses are not protected, nor is the SPI or any header

information—only payload data is protected. Tunnel mode, on the other hand, creates a

Figure 2.6: ESP Packet in Tunnel Mode

13

secure channel between two gateways or between a host and a gateway. In tunnel mode,

the inner headers (any data from the local side of the gateway) are also encrypted. If the

host is tunneling, this protection is essentially useless because the outer address is the

same as the inner address. This type of communication protects data from host to host,

although not along the entire path—only on the length of the tunnel [KeA98a, KeA98b,

KeA98c, Hui96].

2.4 Security Association Databases and Security Protocol Databases

Security Associations are the basis of IPSec functionality. Simply stated, an

IPSec SA is an agreement between two nodes on a network which allows them to

communicate securely. It is identified uniquely by a triple of an SPI, the destination

address, and the protocol used (AH or ESP). An IPSec SA is one-way, so two-way

traffic requires two IPSec SAs [KeA98c]. An SA includes an encryption/decryption

algorithm, a cryptographic key, and other details such as the lifetime of the key. Keys

can be updated manually by system administrators, or automatically via Internet Key

Exchange routines. SAs can be set up manually, or created via the Internet Security

Association and Key Management Protocol (ISAKMP) [KeA98c].

When an encrypted packet is received by a network node, it must examine the

clear text SPI field, destination address, and protocol field, and correlate it with an SA

from the source. If a valid SA exists, the host applies whatever rules the SA dictates to

decrypt and/or authenticate the data. If an SA does not exist, the data is either discarded,

or in some implementations, an SA is generated. All SAs are housed in a Security

14

Association Database (SAD) which resides on the endpoints of the secure channel

[KeA98c].

Another important piece of the protocol is the Security Protocol Database (SPD),

which correlates SPIs to SAs by specifying “what services are to be offered to IP

datagrams and in what fashion.” [KeA98c]. The SPD is consulted for all incoming or

outgoing traffic, and takes one of three actions: apply IPSec protection to the data, allow

the data to bypass IPSec protection, or discard the packet. In the case of outgoing traffic,

if the SPD determines that IPSec protection should be used, the SPD entry will contain an

SA or set of SAs which should be applied. For example, a policy listing could call for

“all matching traffic to be protected by ESP in transport mode using 3DES-CBC…,

nested inside of AH in tunnel mode” [KeA98c]. The SPD entry is linked to a particular

SA or set of SAs in the SAD, which are applied in a specific order. Similarly, with

incoming traffic, the SPD is consulted, and if required, SAs are pulled from the SAD for

use.

2.5 Limitations Posed Upon Network-based Intrusion Detection Systems

Network Intrusion Detection Systems (NIDS) are a popular means of protection

against computer network attacks. They are placed in a subnet where they monitor

network traffic. Primarily passive, they add little if any network overhead, and are

virtually undetectable. Most IDSs operate similar to anti-virus programs, by searching bit

strings for patterns which indicate malicious activity or network misuse. While an

antivirus program examines files, a NIDS examines IP packets [Ran02].

15

Snort is an open-source NIDS representative of the genre. Snort is a very robust

IDS which can be used on Linux, BSD or Windows platforms among others. It provides

several levels of operation, from simply sniffing TCP/IP packets, to logging them, to

providing full IDS service [Roe04]. Snort allows users to configure rules on which

portions of traffic to examine and also provides real-time alerts to possible attacks.

Though Snort is developing IPv6 support, it is not currently available in the public

release. More than one effort is in place to develop IPv6 support for Snort, but it is

apparently a low priority due to the rarity of IPv6 implementations. Internet Security

Systems (ISS) has had a, IPv6 NIDS appliance available since 2003, but not many

competitors have followed suit [Iss04].

Despite the lack of current IPv6 IDS options, future prospects are promising.

There are already IPv6 packet sniffers, one such being Ethereal. Ethereal is an open

source sniffer which can decode 500+ protocols, IPv6 included [Eth04]. Once the

capability of sniffing and dumping IPv6 packets is in place, it is only a matter of

analyzing that data and looking for signs of intrusions. Dexter is a proof-of-concept IPv6

IDS [HaM03] which shows that IPv6 traffic can effectively be captured and decoded for

use with an IDS. Once these packets were decoded, Dexter classified them into different

services originating the packets, and did no actual IDS analysis.

What really poses a threat to NIDS systems, and is exacerbated by IPv6, is the

prospect of widespread use of the ESP capability. Typically an IP stack is transmitted in

the clear, allowing a NIDS (or any intermediate source) to examine the data and do

pattern matching. Encrypted packets, on the other hand, cannot be examined unless the

16

computer capturing the packets has the decryption key and knows the decryption

algorithm. This data, by design, is only available to the endpoints of the communication

channel.

A solution to the problem of examining encrypted traffic with a NIDS is called a

Network Node IDS (NNIDS). In a NNIDS implementation, NIDS functions are

delegated to individual hosts on the network. Unlike a host-based IDS (HIDS) which

examines log files and activities on a local machine, the NNIDS examines the TCP/IP

traffic just as a traditional NIDS would. This arrangement has some significant

advantages, such as the ability to handle encrypted traffic, and distributing the load of

intrusion detection across many computers, rather than doing all packet examination with

a single dedicated NIDS. The drawback, though, is each computer on the network has to

maintain an up-to-date attack signature database [Nss04].

2.6 Problems to be Addressed

For a NIDS to effectively protect a network whose hosts are running IPSec, it

must have enough information to decrypt and scan network traffic. In a network

employing IPSec with static secret-keys, it is conceivable to load the keys onto the IDS

beforehand, affording it the ability to decrypt data using those keys. IPSec, however, was

intended to be more flexible than having static keys assigned to every host. Security

associations can be dynamic, with keys refreshed as often as necessary for the desired

level of security. To develop such a system, other support services are needed, including

the Internet Key Exchange protocol and details of the algorithms used to encrypt the data.

17

2.6.1 Internet Key Exchange (IKE) The IKE is a framework defined in Request

for Comments (RFC) 2409 for the establishment of security associations, over which

IPSec transactions can take place. It is based on the Internet Security Association Key

Management Protocol (RFC 2408), the Oakley Key Exchange (RFC 2412) and the

Security Key Exchange Mechanism (SKEME) described below [HaC98].

ISAKMP ([MSST98]) provides a framework for authentication and key exchange but does
not define them. ISAKMP is designed to be key exchange independent; that is, it is
designed to support many different key exchanges.

Oakley ([Orm96]) describes a series of key exchanges—called "modes"-- and details the
services provided by each (e.g. perfect forward secrecy for keys, identity protection, and
authentication).

SKEME ([SKEME]) describes a versatile key exchange technique which provides
anonymity, repudiability, and quick key refreshment.

A “security association” of the ISAKMP is different from that in IPSec. In

ISAKMP, the security association is a two-way communication path between two hosts,

whereas IPSec SAs are simplex, and are negotiated using the security associations

created by ISAKMP. Though both security associations ultimately accomplish the same

end result (secure communications between hosts), the goal of the IKE security

association is to give IPSec clients a method of creating their own SAs. Therefore, in

instances of dynamic IPSec SA creation, it is likely an IKE security association precedes

any IPSec SA negotiation [HaC98].

An IKE association has four modes of operation, Main, Aggressive, Quick, and

Group. The association itself is handled in two phases. In Phase 1, two ISAKMP hosts

establish a secure and authentic communication channel, the ISAKMP security

association. Phase 1 is accomplished for both Main and Aggressive mode. Phase 2 of

18

the ISAKMP security association is basically everything after Phase 1—it’s the time

when SAs are negotiated on behalf of IPSec or other services. Quick mode is used in

Phase 2. In this manner, many IPSec SAs can be created with one ISAKMP security

association. The remaining details about IKE operation are not relevant, because this

research focuses on IPSec (Phase 2) SAs.

IPv6 and IPSec are currently available for most popular operating systems. IPSec

and IPv6 are fully supported in Windows 2000 (SP1), Windows XP (SP1), and Windows

Server 2003—but not concurrently. According to Microsoft’s website, the Windows XP

implementation of IPv6 supports IPSec with some key limitations:

- The Authentication Header (AH) and Encapsulating Security Payload (ESP) are
supported for both transport and tunnel modes. However, ESP for the IPv6 Protocol
for Windows XP does not support data encryption.

- IPSec in the IPv6 Protocol for Windows XP does not support the use of Internet Key
Exchange (IKE) to negotiate security associations (SAs). IPSec policies, SAs, and
the keys to calculate the Message Digest 5 (MD5) keyed hash for AH or ESP must
be manually configured.

- IPSec for IPv6 traffic is completely independent from IPSec for IPv4 traffic. IPv6
IPSec security policies are not managed with the Windows XP IPSec Policies snap–
in. IPSec policies and SAs for the IPv6 Protocol for Windows XP are manually
configured with the Ipsec6.exe command–line tool [Mic03]

Windows Server 2003 has similar limitations. Although it does support IPSec in

IPv6, Microsoft does not recommend using the native implementation for “production

use.” Like Windows XP, it only provides static keying (not IKE exchanges) and

although it supports the ESP headers, it does not support data encryption [Shi03].

The Unix/Linux/BSD operating systems seem more promising in this area. The

KAME project started in April 1998 as an effort to integrate IPv6 and IPSec support into

the BSD IP stack implementations. Researchers from Fujitsu, Hitachi, Internet Initiative

Japan, NEC, Toshiba, and Yokogawa Electric joined forces and committed themselves to

19

three or more full-time days per week working solely on the issue. Since its original two

year charter, the project has been extended twice until this year, and has achieved

impressive results. Current status includes support for IPv6 and IPSec as well as IKE.

The current, experimental releases are available at www.kame.net, and stable products

are integrated into all recent FreeBSD, NetBSD, OpenBSD, and BSD/OS releases

[Kam04].

2.6.2 Encryption IPSec implementations are required to support DES-CBC, and

3DES-CBC support is recommended. DES-CBC is a combination block and permutation

cipher which encrypts data in blocks of 64 bits. Although the key size is 64 bits, the

effective strength of the key is only 56 bits because 8 bits are used for parity and do not

contribute to key strength. In DES, the key is permuted, split, and rotated enough times

to derive 16 separate keys. The plaintext is permuted in preparation for encryption, and

the 16 keys are applied to the text in succession [Tro04].

For many years, beginning in 1976, DES-CBC was the government-endorsed

encryption method, but was eventually broken as computers grew in power [Tro04]. In

1999, DES was broken in only 22 hours and 15 minutes by combining Electronic Frontier

Foundation’s DES Cracker and a network of 100,000 computers on the Internet. Some

have even suggested that for a couple of million dollars, a system can be built to crack

DES in an hour [Eff04]. In 1999, 3DES was instituted, which is essentially DES three

times, with an effective key strength of 168 bits.

The functionality of DES and 3DES is straightforward, and many

implementations can be found in applications. Additionally, comprehensive

20

cryptographic libraries are easy to obtain on the Internet for performing this encryption

and decryption. Since these are private symmetric key encryption schemes, their security

lies solely in the security of the key itself. Therefore, any method of sharing keys must

afford them the same security that they are in place to provide.

One of the challenges of this research is finding a scheme that shares secret keys

efficiently over a LAN. A LAN running IPSec/IKE clearly has a method of secure

communication between the IDS and individual hosts. Considering the NIDS as just

another node on the network, hosts are able to establish security associations with the

NIDS and use the link to transfer keys for their other SAs. This effectively replicates the

SADs of every network host on the NIDS, except unnecessary information is stripped off.

For example, the NIDS need not be concerned with authentication of a packet, and only

needs to know how to decrypt traffic destined for a particular host, and what key to use in

its decryption. It is important for the NIDS and host to authenticate with each other, and

IKE provides for this authentication.

2.7 Relevant Research

There are numerous developments taking place with IPv6 as it transitions from

RFCs to actual implementations. Most popular operating systems including BSD and

Windows include support for at least the basic features of IPv6. The IPSec portion of

IPv6 is not as widely implemented, though it is being developed. KAME is one example

of this research. According to www.kame.net, they have integrated IPv6 into BSD with

21

IPSec support, “good coverage of algorithms on RFC,” and an IKE implementation

called racoon [Kam04].

Research of security concerns associated with IPv6 is also plentiful [War03,

Hei04, CoM04], though not all directed at IDSs. Dexter is one example of such work,

but there are others. Snort developers are integrating IPv6 integration into their NIDS,

but a working version is not available at this writing. Current IDS systems are concerned

with Secure Socket Layer (SSL) or Transport Layer Security, and some solutions have

been postulated “from session key sharing by the web server allowing ‘on-the-fly’

decryption to server-side storage of keys for later off-line decryption of packets” [Tri03].

With the advent of ESP built into IPv6, the problem worsens. Encrypted traffic becomes

invisible to the NIDS, and there is no way to ensure it is not malicious.

One development in the commercial sector comes from McAfee [Mca04]. The

Intrushield 2600 is an IDS appliance which protects encrypted traffic for SSL. SSL is a

method of data encryption for web-sessions which uses public-key encryption to establish

shared session keys with a client (typically a web browser) through a handshaking

process [Mca04]. By duplicating the server’s private key on the IDS appliance, the IDS

can monitor the handshake and obtain the shared key. Thus possessing the shared key,

the IDS can decrypt and examine future network traffic for that SSL session.

Likewise, there is an abundance of research into IDS and NIDS systems in

general. Perhaps a relevant idea is the notion of the NNIDS [Nss04], mentioned earlier.

NNIDS systems approach the problem of encrypted traffic on two fronts: in one they can

examine encrypted traffic because the NNIDS resides on the machine where the traffic is

22

decrypted; in the other NNIDSs increase the amount of traffic which can be effectively

scanned by distributing it across many machines. The latter is the most likely hindrance

to the success of a secret-key sharing framework. Sharing keys uses network bandwidth,

and maintaining a key database on an already heavily tasked NIDS computer requires

precious CPU cycles--both leading to an ultimate slowdown of the NIDS and reduced

performance. Clearly, as processing time increases, the load a NIDS can handle

decreases.

2.8 Summary

 This chapter introduced IPv6 and IPSec concepts which are important to the

research. Support for IPv6 is not at the same level as IPv4 support. Although this

research project encompasses several different aspects of Internet security, the slow

implementation of IPv6 may prove to be the biggest impediment.

23

3 Methodology

3.1 Introduction

This chapter presents the experimental methodology used for the research.

Section 2 describes the system under test. Section 3 defines the system services, and

Section 4 describes the workload presented to the system. Section 5 explains the metrics

which are observed in the experiments. Sections 6 and 7 explain the factors and

parameters. Section 9 describes the test bed setup for the experiments, and Sections 10

and 11 explain the evaluation technique and experimental design. Section 11 describes

how the results will be used, and Section 12 is a summary of the chapter.

3.2 System Boundaries

The System Under Test (SUT) for this research consists of the secret-key sharing

framework and the attached intrusion detection engine which provides the metric of

primary interest. The component under test (CUT) is the secret-key sharing framework

itself, which consists of secret-key sharing processes on each host, as well as a central

node (co-resident with the IDS software) which collects keys in a database, and captures

and decrypts packets.

The scope of the experiments is limited in several regards. To begin with,

IPv6/Ethernet traffic is the only combination allowed, as the IDS interface is only written

to decode such traffic.

24

Figure 3.1: System Under Test

Another limitation is the IDS itself. The custom IDS used in this research is a

basic pattern matching engine. Overall performance of a particular IDS depends on the

composition of its rule set and its detection methods. The nature of this experimental

research doesn’t dictate that a state-of-the-art IDS be used. The throughput of the

generated workloads is not especially high. Packet interarrival times and burst

distribution shape parameters are varied to ensure that IDS is capable of keeping up with

the offered load. Although the numbers used may not mirror practical system operation,

there is little to be gained from the experiments if the IDS cannot reach a steady state of

packet processing.

Finally, the test bed is relatively small due to resource limitations with the test

LAN consisting of six hosts and one IDS machine.

25

3.3 System Services

The system provides an intrusion detection service on the encrypted workload.

The possible outcomes of this service are that genuine attack attempt was detected, or the

IDS gave a false positive. A false positive is indicative of a more fundamental problem,

as packet content is carefully controlled to avoid such an occurrence. In addition to

generating an alert on a genuine attack or false positive, the IDS could fail to detect an

attack altogether. This might be due to excessive packet drops (whether or not the IDS

CPU is fully utilized), or a failure of the secret-key sharing framework to send the

appropriate key to the IDS for ESP packet decryption.

Over the duration of each experiment, the number of attack detections is

observed. A high percentage of detections relative to the number of attack attempts

indicates that the framework is functioning properly.

3.4 Workload

The workload for the SUT is not based on an entirely realistic LAN workload. A

“typical” LAN workload characterization is difficult due to the large number of possible

LAN configurations. Instead, several workloads are used to provide diverse inputs to the

system to discover behavioral trends. Through a series of pilot studies, the maximum

throughput (or maximum offered experimental load) for each workload is determined by

noting when the NIDS starts missing a significant number of attacks (more than

approximately 5%, which indicates a failure of the secret-key sharing framework). All

26

traffic is generated at the application layer, and each TCP payload contains an attack

signature.

The offered workloads vary in three regards. First, the percentage of network

traffic which is encrypted varies from 0-100%. Although it is unlikely for a network to

see 100% encrypted traffic, that level is used to stress the framework. The second

variation is the payload size. Payload size distribution has a significant effect on network

performance in terms of “good” data throughput. The workloads for these experiments

vary from a small payload size to nearly maximum payload size, including a statistical

mix. Finally three network configurations are used to alter traffic patterns. Table 3.2 in

Section 3.7 contains a tabular listing of workload characteristics and the associated levels.

These workloads are justified by the goals of the research. The goal is not to

determine how a particular IDS performs in a particular environment, but rather to

determine if the secret-key sharing framework adds significant overhead to the network

and IDS CPU under various conditions.

3.5 Performance Metrics

The SUT provides several metrics which are of interest. The first is the number

of attack signatures detected over a period of time, or the derived metric of attack

detection rate (number of attacks detected/number of attacks attempted). This is clearly

important as it is the primary indication the system is functioning. Beyond its use to

derive useful offered load data rates, the metric is not analyzed. Dropped packets are also

27

measured, although this metric is primarily used to determine appropriate workload

characteristics.

In addition to attack detection rate, a record is maintained of how many packets

could not be decrypted. This metric, in conjunction with the number of dropped packets,

is valuable in determining the cause of variation in the attack detection rate.

The next two metrics are network throughput and network goodput. In this case,

“goodput” refers to the amount of “good” or “user” data which is being sourced to the

SUT. Although throughput is heavily dictated by the offered load, an accurate

measurement of data presented to the SUT is beneficial for drawing conclusions about

dropped packets and overloading the system. Additionally, the level of network overhead

created by the secret-key sharing framework is determined.

The last metric is the CPU utilization of the computer hosting the IDS and key-

receiving suite.

3.6 Parameters

3.6.1 System Parameters All hosts are running the FreeBSD 4.10 operating

system as a VMWare guest on a Windows 2000 host machine. FreeBSD was chosen due

to its unique support for IPv6, IPSec, and Encapsulating Security Payload headers. No

other available operating system supports this combination of requirements (with the

exception of other *BSD releases). The decision to operate as a VMWare guest was

driven by the convenience of the setup, and ability to easily make system changes and

revert to previous configurations in case the installation was broken or corrupted during

28

the research effort. Though this causes some performance penalty, it will be a penalty

across the board on all configurations and therefore is not significant.

Parameters specific to the secret-key sharing framework are defined as follows.

Though the Phase 2 (IPSec) key lifetime is varied, the Phase 1 (IKE) key lifetime is set to

1 minute. This generates a good amount of activity on the framework with Phase 1 key

exchanges, and prevents a false indication of steady state due to keys being static for a

long period of time.

Encryption type is a parameter of both the system and the workload. The

encryption protecting the secret-key sharing data is the same type and strength used to

encrypt the workload. In these experiments, encryption type is set to triple DES (3DES).

DES is required by the Internet Key Exchange (IKE) RFC, 2409 and 3DES is

recommended. This and its status as one of four FIPS approved encryption algorithms

makes 3DES a well-founded selection [Nis04].

 Finally, subnet size is a parameter which remains constant for the experiment. It

is set to six hosts, plus the NIDS. Although this is small for a realistic model, it is

sufficient to stress test the secret-key sharing framework in the desired way. Subnet size

certainly affects performance, but it is not examined in this research.

3.6.2 Workload Parameters There are a number of workload parameters which

affect the performance of the secret-key sharing framework. Attacks are generated in a

bursty fashion, according to a Pareto distribution with shape parameter of 1.5. A shape

parameter between 1.5 and 2.0 is appropriate for self-similar network traffic, and

converges within a finite number of samples [Bal99, Kra04]. All three attack payload

29

sizes mandate slight adjustment of the workload parameters so that the highest possible

throughput is used regardless of this factor. For all scenarios, time between bursts are

exponentially distributed, and the minimum inter-payload wait times are constant, with

values listed in Table 3.1. The inter-burst wait time and inter-payload wait times were

determined through pilot studies to stress the IDS CPU without overloading the system to

the point of dropping a high percentage of packets (greater than 5%)

Table 3.1: Inter-burst and Inter-Packet Wait Times

Payload Size

Inter-burst Time (ms) Inter-payload Time (ms)
Small 500 10
Mix 500 10

Large 500 100

3.7 Factors

The five factors varied include key method, Phase 2 key expiration time, network

configuration, payload size, and percentage of encrypted load. Table 3.2 contains the

levels for each factor, and the sections following the table describe the levels in detail.

3.7.1 Percentage Encrypted Traffic Percentage encryption is varied 0%, 33%,

66%, and 100%. These levels provide some granularity which can be analyzed, rather

than just 0 and 100% encrypted traffic. Varying the percentage encryption causes more

or less activity on the IDS-resident SA database.

30

Table 3.2: Factors and Levels

Factor Levels

Workload
Characteristics % Encrypted Traffic 0%, 33%, 66%, 100%

 Payload Size small, large, statistical mix

 Configuration Star (6-to-6)
 Single (3-to-3)
 Server (5-to-1)

Other Factors Key Method static, dynamic

 Phase 2 Key Expiration Time 15 seconds, 30 seconds

3.7.2 Payload Size Packet size is not directly controlled. Attack payloads are

generated at the application level, leaving the TCP/IPv6 stack to encrypt, encapsulate,

and transmit them. This is needed to ensure the framework functions with the IPSec

enabled FreeBSD stack. As a result, packets cannot be directly crafted. Thus, true

packet size is a factor of the TCP/IPv6 stack as well as encryption constraints, and

payload size is varied to generate packet near to the desired size. Payload size, then,

takes on one of three values: small, large, and statistical mix.

The small payload size is a very small payload containing the attack signature

padded to 40 bytes. Maximum sized payloads contain an attack signature and are padded

to about 1350 bytes which allows 40 bytes of header IPv6 header data, 20 bytes of TCP

data, and room for the ESP header/padding without exceeding the maximum transmission

unit of 1500 bytes for an Ethernet packet. The statistical payload mix is based on the

31

assortment shown in Table 3.3. The mix is derived from Internet data collected in

February 2001 by the Measurement & Operations Analysis Team from the NLANR

(National Library for Applied Network Research) project, as analyzed in [Agi04]. In this

set of experiments, the statistical mix is interpreted as the payload size, rather than the

packet size. Thus, the statistical mix workloads contain 6 parts 40 byte attacks, 4 parts

576 byte attacks, and 1 part 1350 byte attack.

Table 3.3: Packet Size Statistical Mix

3.7.3 Network Configuration In lieu of varying the subnet size, three network

configurations are examined with fewer to more required SAs. In the Single

configuration, three unique peer-to-peer connections are used, requiring six SAs. In the

Server configuration, one host acts as a server, or central node, to which the other five

hosts send attacks requiring 10 SAs. Finally, the Star configuration generates traffic from

each host to a random selection of the 5 other hosts, which requires up to 30 SAs. Figure

3.2 illustrates the different configurations.

32

Figure 3.2: Network Configurations

3.7.4 Key Method The keying method is either static or dynamic. Static keying

creates the baseline results which are subsequently compared to dynamic keyed results.

With static keying, all keys are provided beforehand to each host, and a list of those keys

is also provided to the decryption processor. In dynamic mode, network hosts generate

IPSec keys dynamically through IKE (using a modified version of racoon), then update

those keys and send them to the decryption processor, adding both network and CPU

overhead to the hosts and IDS machine.

3.7.5 Phase 2 Key Expiration Time Also driven by the LAN size limitation,

Phase 2 key expiration time is set to two fairly short values, 15 and 30 seconds,

generating high levels of key-exchange traffic.

33

3.8 Test Bed Setup

 This section describes all vital information needed to recreate the experiment.

Sections 3.8.1 and 3.8.2 describe the physical setup and IPv6 / IPSec configuration,

respectively, as well as the software present on each network host. Sections 3.8.3

through 3.8.7 provide more detail on the software packages and their setup.

3.8.1 Physical Setup The entire test LAN consists of 8 separate physical

computers. Each computer is running Windows 2000 with VMWare 4.01 build 5289

executing a FreeBSD 4.10 guest OS. All computers are Dell Poweredge 1650’s, with the

exception of the IDS, which is a Dell Poweredge 1750. Specifications and software

packages are provided in Table 3.4. Computers are connected through an 8 port hub and

limited (via VMWare) to 10Mbps.

Table 3.4: Computer Configuration

Machine
IPv6

Address CPU
Installed Memory

(allocated to VMWare)

Research
Software
Installed

IDS 2004::1 Dual Intel P4
2.4 GHz*

1024 (768) server
cpumon
racoon

Generic

Host
2004::2
2004::3
2004::4
2004::5
2005::7
2004::8

Intel PIII
1.4GHz

512 (384) attackclient
v6listen
cpumon
racoon2

Control
Node

2004::6 Intel PIII
1.4GHz

512 (384) attacknet

* The VMWare guest OS only uses one processor

34

3.8.2 IPv6 / IPSec Setup Enabling IPv6 in FreeBSD 4.10 is a simple matter of

adding a few lines to the rc.conf file, since the kernel enables IPv6 support by default. In

these experiments, no host was acting as an IPv6 router, all addresses were set manually.

file: rc.confl
ipv6_enable=”YES” #enable IPv6
ipv6_ifconfig_lnc0=”2004::1” #configure network device lnc0 with IPv6 address 2004::1

Configuring IPSec begins with a few non-default kernel options. The IPSec-

enabled kernel must include the following lines in the configuration file:

file: mykernel
options IPSEC #IP security
options IPSEC_ESP #IP security (crypto; define w/ IPSEC)
options IPSEC_DEBUG #debug for IP security

After building the kernel with this configuration, IPSec has to be implemented via

SPD entries, as well as SAD entries in the case of manual (static) keying. Both are

accomplished with the setkey utility. For either static or dynamic keying, SPD entries

have to be generated. This is a matter of defining a set of host-host policies along with

associated processing conditions. First, all ICMPv6 traffic is explicitly excluded from

IPSec processing. Unfortunately, IPv6’s neighbor solicitation/discovery takes place via

ICMPv6 and IPSec protection of such traffic leads to hosts “losing” each other on the

network.

#file: manual_1 or racoon_1.15 or racoon_1.30
#! /bin/sh
setkey -c <<EOF
spdadd 2004::2 2004::1 ipv6-icmp -P out none; #exclude incoming icmpv6 traffic
spdadd 2004::1 2004::2 ipv6-icmp -P in none; #exclude outgoing icmpv6 traffic
… (repeat for each host)
EOF

35

To distinguish between encrypted and clear traffic using IPSec security

associations, two ports are used—port 326 for encrypted traffic, and port 325 for clear

traffic. Security Policies are set up to encrypt/decrypt any outgoing/incoming traffic

according to IPSec-ESP rules. Note port 525 is used for secret-key sharing with the IDS

interface, and is therefore protected with IPSec as well.

#file: manual_2 or racoon_2.15 or racoon_2.30
#! /bin/sh
setkey -c <<EOF
spdadd 2004::2 2004::1[525] tcp -P out ipsec esp/transport//require ; # process outgoing
spdadd 2004::1 2004::2[525] tcp -P in ipsec esp/transport//require ; # and incoming
spdadd 2004::2[525] 2004::1 tcp -P out ipsec esp/transport//require ; # data on port 525
spdadd 2004::1[525] 2004::2 tcp -P in ipsec esp/transport//require ; # to/from host
 # 2004::1
spdadd 2004::2 2004::3[326] tcp -P out ipsec esp/transport//require ; # process outgoing
spdadd 2004::3 2004::2[326] tcp -P in ipsec esp/transport//require ; # and incoming
spdadd 2004::2[326] 2004::3 tcp -P out ipsec esp/transport//require ; # data on port 326
spdadd 2004::3[326] 2004::2 tcp -P in ipsec esp/transport//require ; # to/from host
 # 2004::3
… (repeat for each host)
EOF

At this point, the configuration files diverge for static and dynamic keys. When

using static keys each SA is manually entered, including encryption key. This is

accomplished through the following statements. Although symmetric keys are used, each

two-way association requires two SAs and therefore two keys.

#file: manual_2
#! /bin/sh
setkey -c <<EOF
#add spi 2121 to the SAD:
#traffic from 2004::2 to 2004::1 should be encrypted with 3des-cbc, using the key provided
add 2004::2 2004::1 esp 2121 -E 3des-cbc
0xaa;
#add spi 1212 to the SAD:
#traffic from 2004::1 to 2004::2 should be encrypted with 3des-cbc, using the key provided
add 2004::1 2004::2 esp 1212 -E 3des-cbc
0xdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeef;
… (repeat for each host)
EOF

36

When using racoon or racoon2 IKE daemons, the daemons simply need to be

executed with a provided configuration file.

#file: racoon_2.15
#! /bin/sh
/usr/local/sbin/racoon2 -f /usr/v6/racoon/racoon15.conf #execute racoon2 using racoon15.conf

The racoon.conf file outlines many configuration options for the racoon or

racoon2 daemons. Most defaults were not changed from the example racoon.conf

included with the racoon packages from KAME. For these experiments, the IKE

authentication method used was “pre-shared key,” and keys were stored in psk.txt (set to

mode 600). The important non-default configuration lines for racoon.conf are shown

below. All settings were identical for each host, guaranteeing the ability to communicate.

#file: racoon15.conf
path pre_shared_key "/usr/v6/racoon/psk.txt" ;
#IKE configuration
remote anonymous
{
 exchange_mode aggressive,main;
 my_identifier user_fqdn "sakane@kame.net";
 nonce_size 16;
 lifetime time 1 min; # sec,min,hour
 proposal {
 encryption_algorithm 3des;
 hash_algorithm sha1;
 authentication_method pre_shared_key ; #authentication method
 dh_group 2 ; #use diffie-hellman group 2 for key
generation
 }
}
#IPSec configuration
sainfo anonymous
{
 pfs_group 1; #perfect forward secrecy group 1
 lifetime time 15 sec; #key lifetime = 15 seconds
 encryption_algorithm 3des ; #encrypt with 3des-cbc
 authentication_algorithm hmac_sha1; #use hmac_sha1 for authentication
 compression_algorithm deflate ;
}

37

3.8.3 racoon and racoon2 Racoon is an IKE daemon developed by the KAME

project [Kam04]. The version used here is racoon-20040408a. Racoon2 is a slightly

modified version of racoon, set up to send any freshly generated keys, as well as key

expiration messages, to the IDS interface. Modified/new files for this research include:

Filename (M)odified or (N)ew Functionality Affected/Added
pfkey.c M isakmp_ph2delete(iph2): now invokes SAexp
isakmp.c M pk_sendupdate(iph2): now invokes SAadd

pk_sendadd(iph2): now invokes SAadd
pk_recvexpire(mhp): now invokes SAdel

SAadddel.c N SAadd: sends SA information to IDS interface
SAdel: informs IDS interface that an SA has been deleted

SAexp.c N SAexp: informs IDS interface when an SA has expired

When a message needs to be sent to the IDS, a thread is started and detached,

limiting the overhead on the host machines. As such, if the message send fails there is no

error checking to that effect. Messages take the formats:

Message Type Format
Add a Key ADD^<source>^<destination>^<spi>^<encryption type>^

<encryption key length>^<authentication type>^<authentication field length>^
<encryption key>^<lifetime>^<life bytes>^

Delete a Key DEL^<source>^<destination>^<spi>^
Expire an SA EXP^<source>^<destination>^

These update messages are sent over port 525 and are encrypted using IPSec,

guaranteeing their confidentiality to the level of the keys they are transmitting.

3.8.4 v6listen A multi-threaded listener for TCP/IPv6 which listens to ports 325

and 326 on each host computer.

3.8.5 server This is the primary application under test. Server has many threads

of operation with the functions of accepting key updates from hosts, capturing and

decrypting network traffic, and performing intrusion detection on the sniffed packets. In

38

general terms, server maintains an IDS-resident copy of all SADs on the network. It then

uses the data to decrypt ESP packets on the network and perform intrusion detection.

Figure 3.3 shows a detailed flow diagram of server functionality.

Figure 3.3: server Functionality

39

Server operation is dependent on several publicly available libraries:

• libpcap 0.8.1: used by many popular applications such as Snort and

tcpdump, pcap is an integral part to any packet-sniffing application

[Pca04].

• libpthread: posix thread system, used for implementing server’s

threads of execution.

• libbotan v1.2.8: botan is a cryptographic library selected for its ease of

use and robust support for many algorithms. Though server natively

only supports DES, Triple DES, and AES, expanding support to other

IPSec algorithms such as cast128 and blowfish is trivial, making botan

a good selection.

The three primary threads of server are shown in Figure 3.3 and include the

packet-capturing thread, the SAD maintenance thread, and the SAD update thread, which

is actually a pool of 32 threads receiving updates. When running in static keying mode,

the SAD update threads and SAD maintenance threads are not started, leaving only the

packet sniffing thread running.

3.8.6 attacknet and attackclient To test the secret-key sharing framework, an

network of attacking computers was developed consisting of an instance of attackclient

running on each host, and one master node running attacknet which controls the clients.

Each client is initialized with the IDS rules file, and uses those rules to create and send

attack payloads to another listening host. All attacks begin at the application layer, by

writing attack payloads to an open socket. These clients maintain counts of the number

40

of attacks sent, as well as the number of bytes sent during a particular run of an

experiment.

Attacknet is the master control for the experiments. It maintains a connection to

each host, as well as to the IDS. Prior to an experimental run, attacknet polls and logs

starting status of the clients, resets their counters, and sets the traffic generation

parameters including random seed. It then tells the IDS to begin logging packet data, and

begins attacks. Upon completion, attacknet halts the attacks, logs end status of the clients

as well as attacks detected by the IDS. Although different modes can be set while

attacknet is running, it must be provided a configuration file for startup which tells

attacknet the address of the IDS and the clients on the network, as well as provides the

option to load up to 64 quick-command buffers. If complex commands are run often,

they can be loaded in the configuration file and then quickly executed by typing “quick

<number>.” An example of a configuration file for running in star mode is shown in the

following box.

#file: attacknet-star.cfg
#first line is the address of the IDS
2004::1
#these are the clients
2004::2 2004::3 2004::4 2004::5 2004::7 2004::8
#following are quick cfg lines:
timesync
connect 600
status
2004::2 -cfg star 2004::3 2004::4 2004::5 2004::7 2004::8
2004::3 -cfg star 2004::2 2004::4 2004::5 2004::7 2004::8
2004::4 -cfg star 2004::3 2004::2 2004::5 2004::7 2004::8
2004::5 -cfg star 2004::3 2004::4 2004::2 2004::7 2004::8
2004::7 -cfg star 2004::3 2004::4 2004::5 2004::2 2004::8
2004::8 –cfg star 2004::3 2004::4 2004::5 2004::7 2004::2

41

3.8.7 cpumon: This is a simple utility which reads the FreeBSD KVM to

determine how the CPU is being utilized. The output is directed to a file which is then

parsed to determine CPU utilization over time. A sample of the output is:

#file: xx-xx-icpu
Time User Wait Kernel Int Idle
1102109297 0.000000 0.000000 0.031250 0.000000 0.968750
1102109298 0.007752 0.000000 0.023256 0.000000 0.968992
1102109299 0.010336 0.000000 0.023256 0.000000 0.966408
1102109300 0.009690 0.000000 0.023256 0.000000 0.967054
1102109301 0.009288 0.000000 0.023220 0.000000 0.967492

3.9 Evaluation Technique

These experiments are conducted through empirical study. The availability of the

FreeBSD operating system with nearly all desired functionality makes the choice fairly

simple. The combination of cpumon and server provide all of the necessary metrics to

evaluate the system. Additionally, all hardware for empirical study is readily available.

Evaluation with analysis or simulation would likely require as much or more effort.

Validation of the test bed is conducted in several steps. As the framework is

being built essentially from scratch, testing is done throughout development to ensure

correct operation of different components. When all sub-parts are integrated into the

finished product, pilot studies and single attacks are executed to verify overall

functionality. The steps taken to validate the test bed are listed in Table 3.5.

Generic validation criteria is that single network attacks are decrypted and

decoded correctly by IDS interface and the appropriate alert is generated by the IDS.

Using two clients, one to send and one to receive, a single attack is generated with the

framework in dynamic mode, and then in static mode. If the IDS flags an alert, the

42

Table 3.5: Validation Tests

Validation Goal Validation Test Validation Criteria
Detect single
encrypted attacks

1 attack sent from client to client Attack is decrypted by the IDS
interface, and the IDS alerts the
attack

Detect multiple
encrypted attacks

100 attacks sent from each host in
star configuration at a low rate in both
static and dynamic modes

All attacks detected

server sustains
proper operation

300 second runs in star configuration
with low attack rate in dynamic mode

server SAD size increases and
decreases appropriately when
scenario is over

Framework
generates
appropriate traffic
on network

300 second runs in star configuration
are examined in Ethereal

TCP conversations between the
IDS and clients only occur at
specified key expiration intervals

framework is functioning correctly. Then, a test of multiple attacks is conducted. A set

number of attacks are sent at a slow rate to ensure all attacks are alerted. Finally, attacks

are sent for 300 seconds to ensure that server is functioning correctly for multiple key

exchanges, and maintaining the SAD appropriately while not letting it grow out of

control before deleting expired keys. Finally, traffic generated by the framework is

examined with Ethereal to ensure it is not generating more traffic overhead than it should

be. Once the test bed is validated, empirical data from the experiments can be considered

valid as well. Pilot studies are conducted, as mentioned in Section 3.6.2, to determine

traffic parameters for which there is a low to zero level of packets dropped by server for

each network configuration and packet size.

43

3.10 Experimental Design

A full factorial experiment is conducted. For each network configuration and

packet size, the baseline is the IDS CPU utilization with server running in static key

mode with 0% encryption. These and all other experiments are shown in Table 3.6.

Table 3.6: Experiment List

Configuration Key Method Key Expiration % Encrypted Payload Size

Static n/a 0,33,66,100%small, mix, large

Dynamic 15, 30 sec 0,33,66,100%small, mix, large

Star

Static n/a 0,33,66,100%small, mix, large

Dynamic 15, 30 sec 0,33,66,100%small, mix, large

Single

Static n/a 0,33,66,100%small, mix, large

Dynamic 15, 30 sec 0,33,66,100%small, mix, large

Server

Each experiment is executed until steady state is reached, i.e., when the standard

deviation of the IDS CPU utilization is within about 5% of the mean. Ten replications

with different random seeds are executed for each experiment. It is important to note that

repeating an experiment twice with the same seed is likely to produce slightly different

results. Although burst sizes and generated wait times are consistent between runs, actual

wait time is difficult to control. Initially, the usleep(long microseconds) was used for

delaying such intervals. However, due to the fact that it suspends thread execution and

does not guarantee a return time, a new usleep function was created to simply occupy the

processor with a busy loop until the specified number of microseconds had passed. The

44

maximum resolution required by the experiments is around 10 milliseconds, and a

comparison between the accuracy of usleep and new_usleep at 10 milliseconds (Table

3.7) shows how much more reliable new_usleep is. Even this does not guarantee exact

results, but provides higher consistency by maintaining control of the CPU.

Table 3.7: usleep/new_usleep Comparison

Function Requested Wait
(μs) Replications Actual Wait (Mean) Actual Wait (Standard

Deviation)
usleep 10000 10000 19984.73 5069.38

new_usleep 10000 10000 10036.99 304.72

3.11 Experimental Design for Results Analysis and Interpretation

Upon completion of the experimental trials, the data is compared to the baseline

data, and the CPU utilization examined across runs from least CPU intensive to most. It

is determined whether the secret-key sharing framework imparts statistically significant

overhead onto the network and/or IDS CPU. Analysis of Variance (ANOVA) is

performed across the factors of key expiration time, percentage encrypted traffic, and

keying mode to determine how each affects the CPU utilization and throughput. It is

expected that main effects will explain the vast majority of variance, and interaction

effects will be insignificant. The results of these tests are detailed in Chapter 4.

45

3.12 Summary

This chapter presents an experimental methodology for determining the effect of a

secret-key sharing framework on intrusion detection capability for encrypted traffic and

the overhead it imparts on the network and IDS CPU. Experimental results and analysis

is presented in Chapter 4.

46

4 Analysis

4.1 Introduction

This chapter presents experimental results and analysis. Section 4.2 describes

how the data was collected and compiled. Section 4.3 discusses the data rate selection,

and goodput/throughput ratio. Section 4.4 explains attack detection rates and Section 4.5

looks at the network overhead directly related to the IDS. Section 4.6 examines the CPU

utilization for the IDS computer. Section 4.7 discusses research limitations, and Section

4.8 is the chapter summary.

4.2 Data Collection and Analysis Methods

The experiments have ten trials per iteration, with each trial is lasting for five

minutes. This allows the standard deviation of IDS CPU utilization to fall to within

approximately 5% of the mean. Packet logs are collected by the IDS computer for data

rate analysis. The IDS, rather than a third-party computer, is chosen to measure

throughput so that decrypted goodput can also be logged. The server software also

collects the IDS CPU utilization measurements and all statistics relating to packet

collection/decryption/attack detection. Time between experiments is at least 45 seconds

which allows IPSec keys to expire and require refreshing. This also gives an opportunity

to observe transient behavior.

Data is initially compiled using a custom C++ program called parsedata. This

program extracts mean values for IDS and host CPU utilization, throughput, and goodput,

as well as raw values for attack detection rate, pcap packet drop rate, and number of

47

undecryptable packets. The data imported into Excel where it is further consolidated and

displayed in graphical form. Analysis of Variance (ANOVA) for the IDS CPU response

and throughput is performed with Mathematica. Mathematica provides native support for

three-way ANOVA and is discussed in Section 4.6.

4.3 Throughput and Goodput Rates

In an environment of gigabit Intrusion Detection Systems, the most obvious

shortcoming of these experiments is the low data rates of the presented workloads.

Figures 4.1-4.3 display the experimental mean throughput rates, grouped by attack

payload size. As shown, the throughput ranges from about 0.04Mbps to 0.35Mbps.

Given the maximum throughput allowed by VMWare is 10Mbps, the submitted

throughput is quite low. A few factors influence the restriction. To begin with, the

aggregate traffic generated by six hosts generating attacks with no delays between is

about 2.5Mbps. However, the limiting factor is the server software, which was dropping

greater than 50% of packets at that data rate, the cause of which is discussed in the next

paragraph. Consequently, the attack generation rate is reduced until an acceptably low

percentage of packets are dropped by the IDS computer, as discussed in Section 3.6.2.

The cause of the high packet drop rate is ultimately undetermined, but there are a

few possibilities. Surprisingly, it is not due to the increased loading placed on the CPU

by the decryption process. It also is not due to the un-optimized detection engine. Pilot

studies which only logged packet arrivals and drops without decryption or intrusion

detection functions yield similarly high packet drop rates. Additionally, since the

48

Figure 4.1: Mean Throughput for Experiments with Large Attack Payloads

Figure 4.2: Mean Throughput for Experiments with Mixed Attack Payloads

49

CPU is not even close to being overloaded while packets are being dropped discounts the

possibility the decryption/IDS loading was too much for the CPU to handle. It could be

due to the multi-threaded operation of the IDS, contrasted to Snort’s single-threaded

operation, which, as an open-source IDS standard, is capable of handling a much higher

throughput than was presented in these experiments. With several threads vying for

control of the CPU, it is possible that packets are dropped while the packet-handling

thread is not in control. Some Internet references indicate that the default value for

BPF_BUFSIZE of 4KB is too small for fast packet sniffing applications. External

empirical trials estimate that the buffer size should be set as high as 4MB for sniffing

applications [Bro04, Fre04]. However, review of the Snort source code shows that Snort

does not directly modify the value, rather that it uses the value overridden by libpcap of

not more than 32KB (in pcap-bpf.c, the BIOCGBLEN ioctl is used to set the read buffer

Figure 4.3: Mean Throughput for Experiments with Small Attack Payloads

50

size) [Pca04, Roe04, Sou03]. Since server also uses libpcap, it should not be affected

any differently than Snort. Regardless of why the drop rates are high with higher

throughputs, the effect is eliminated for the experiments by studying the response to

workloads at (low) throughputs which make drop rates insignificant.

Observing Figures 4.1-4.3 shows the obvious trend that a higher percentage of encrypted

traffic and configurations requiring more security associations (SAs) yield higher

throughputs. Table 4.1 summarizes t-tests which are performed on every pair of

experiments with throughput as the response variable. For each factor, the percentage of

statistically different experiments is determined by isolating the group of experiment

pairs which vary only in that factor, and determining how many of those total

comparisons show a statistical difference with 95% confidence.

Table 4.1 Percentages of Comparisons Showing Statistical Differences with 95%

Confidence, Specific to Variation in a Particular Factor

Factor
Total Number

of
Comparisons

Number of
Comparisons

Showing
Differences

Percentage of
Comparisons

Showing
Differences

95% Confidence Interval
for Percentage of

Comparisons Showing
Differences

Key Method 81 78 96.30% 92.18 – 100%
Configuration 90 73 81.11% 73.02 – 89.20%
% Encryption 108 97 89.81% 84.11 – 95.52%

For all attack payload sizes and percentages of encrypted traffic, there is a

statistically significant difference in throughput between single/star and server/star

configurations with 95% confidence. In the majority of cases, however, there is not a

significant difference between single/server configurations, as there is less of a change

between number of required SAs and therefore a smaller difference in key negotiation

51

traffic. Recall that single configuration requires six SAs and server mode requires 10,

while star mode requires 30. Differences in key method greatly affect the throughput,

and a statistical difference is shown in nearly every comparison. While percentage

encryption does not have as large of an impact on throughput, almost 90% of

comparisons do show a statistically significant difference when only this factor is varied.

The trend of higher throughput for higher encryption percentage and more SAs is

logical since the majority of the goodput, in the form of attack payloads, remains the

same across all variations of factors except payload size. As IPSec is applied, the ESP

header and tail are added to encrypted payloads as well as padding, which can be up to 63

bytes with TripleDES due to the 64 byte block size. Note that HMAC-SHA1

authentication is added to the ESP packets in the dynamic-keyed experiments, though this

addition is insignificant, accounting for less than 1% of total throughput. The more

significant differences in throughput are due to the number of SAs required, which

generate quite a bit of traffic between hosts for IKE and IPSec key negotiation. Figures

4.4-4.6 show a ratio of mean goodput to mean throughput for each payload size.

As the figures show, the ratio of good data transmitted to the total data transmitted

drops anywhere between 0.06 to 0.16 from single mode to star mode, as more SAs are

added increasing the network overhead. The surprising result, seen on Figure 4.6, is that

with small payloads, 100% encrypted traffic, and star configuration, only about 6.5% of

total network traffic is user data. This can have a significant effect on the IDS, which

scans all traffic. In these experiments, UDP traffic is not analyzed by the IDS, simply

logged and discarded. However, since IKE and IPSec exchanges take place using the

52

Figure 4.4: Ratio of Mean Goodput to Mean Throughput for Experiments with Large
Attack Payloads

Figure 4.5: Ratio of Mean Goodput to Mean Throughput for Experiments with Mixed
Attack Payloads

53

UDP protocol under the racoon implementation, a realistic IDS which scans UDP

packets has to contend with a significant amount of traffic brought on by the IKE/secret-

key sharing framework to ensure complete detection capability. While a typical TCP

attack, such as a buffer overflow in clear text, may generate only a small amount of TCP

traffic, the ensuing IKE and IPSec key negotiations from the same attack over an

encrypted channel can create quite a bit of added traffic for the IDS to examine.

 Analysis of variance (ANOVA) on the throughput response is shown in Table 4.2,

grouped by attack payload size. The F-Ratios indicate all factors and interactions are

significant with 95% confidence. The first-order factors explain the highest amount of

variation, though no one factor stands out across all three payload sizes. For large attack

Figure 4.6: Ratio of Mean Goodput to Mean Throughput for Experiments with Small
Attack Payloads

54

Table 4.2: Analysis of Variance for Throughput

Large Attack Payloads

Factors DF SumOfSq MeanSq F-Ratio F-Table P Value % Variation
km 2 0.065825 0.032913 190.0559 3.01 0 17.35%
pe 3 0.11665 0.038883 224.5331 2.62 0 30.74%
nc 2 0.070623 0.035312 203.909 3.01 0 18.61%

km * nc 4 0.027324 0.006831 39.44572 2.39 0 7.20%
km * pe 6 0.023238 0.003873 22.36456 2.12 0 6.12%
nc * pe 6 0.010305 0.001717 9.917445 2.12 4.72E-10 2.72%

km * nc * pe 12 0.00935 0.000779 4.499212 1.77 1.05E-06 2.46%
Error 324 0.056108 0.000173 14.79%
Total 359 0.379423

Mixed Attack Payloads

Factors DF SumOfSq MeanSq F-Ratio F-Table P Value % Variation
km 2 0.077932 0.038966 622.9065 3.01 0 25.10%
pe 3 0.075131 0.025044 400.3445 2.62 0 24.19%
nc 2 0.056984 0.028492 455.4659 3.01 0 18.35%

km * nc 4 0.030197 0.007549 120.6822 2.39 0 9.72%
km * pe 6 0.026341 0.00439 70.18098 2.12 0 8.48%
nc * pe 6 0.013584 0.002264 36.19184 2.12 0 4.37%

km * nc * pe 12 0.010097 0.000841 13.45139 1.77 0 3.25%
Error 324 0.020268 6.26E-05 6.53%
Total 359 0.310534

Small Attack Payloads

Factors DF SumOfSq MeanSq F-Ratio F-Table P Value % Variation
km 2 0.079815 0.039908 4598.354 3.01 0 27.58%
pe 3 0.073147 0.024382 2809.447 2.62 0 25.27%
nc 2 0.051858 0.025929 2987.686 3.01 0 17.92%

km * nc 4 0.029816 0.007454 858.8884 2.39 0 10.30%
km * pe 6 0.026709 0.004451 512.9192 2.12 0 9.23%
nc * pe 6 0.015305 0.002551 293.9161 2.12 0 5.29%

km * nc * pe 12 0.009962 0.00083 95.65455 1.77 0 3.44%
Error 324 0.002812 8.68E-06 0.97%
Total 359 0.289424

Legend

Symbol Factor
km Key Method
pe Percentage of Encrypted Traffic
Nc Network Configuration

55

payloads, percentage of encrypted traffic affects throughput more than in the cases of

small and mixed attack payloads. This can be attributed to the higher overall throughput

present in large-payload scenarios—the key method and network configuration add a

smaller relative overhead to the throughput, whereas percentage of encrypted traffic adds

more overhead on a more consistent per-packet basis.

4.4 Attack Detection Rates, Dropped Packets, and Undecryptable Packets

One of the goals for the experiments was to have a high, if not perfect, attack

detection rate given that an intrusion detection system which does not provide thorough

coverage is not worth much. Average detection rates for large, mixed, and small payload

sizes are 98.92%, 95.85%, and 98.3% respectively, across all experiments for that

payload size. The actual detection rates range from a low of 91.75% to a high of

100.83%, with 89% of the experiments yielding a detection rate of 95% or better. Low

detection rates are generally correlated to dropped packets, and packets which could not

be decrypted, an event discussed later in the section. Detection rates over 100% do occur

on a few occasions (16% of experiments) and are due to TCP retransmits by the attacking

hosts. In some cases the receiving host fails to ACK a particular packet, and the packet is

resent. As the retransmits occur at the TCP layer and not the application later, they are

not recorded as additional attacks sent—however the IDS intercepts and alerts on the

attacks all the same, driving the attack detection rate slightly over 100%. The uncertainty

of the TCP retransmits must be considered in the lower bound of the attack detection rate

as well. Experiments showing no packet loss and independent trials conducted after data

56

collection indicated that up to 2.5% of attacks were duplicated in a TCP retransmit,

though a bound is not guaranteed. TCP retransmits were unexpected, and were not

tracked for the experiments. Therefore they introduce some error into the attack

detection rate which is not fully accounted for. Table 4.3 summarizes attack detection

rate and other statistics discussed in this section.

Packet drop statistics are recorded by pcap, and as mentioned in Section 4.3 are

necessarily low. With the exception of one experiment (number 56 from Appendix A),

which yields a mean drop rate of 5.15%, all drop rates are below 5%. Experiments with

mixed attack payloads tended to drop more packets than the other sizes, due to the fact

the attacks were being sourced at the same rate as small attack payloads but with a higher

average size (see Table 3.3). That, the 100% encrypted traffic, and the 15 second key

expiration time for experiment 56 are all factors influencing the slightly higher drop rate.

The overall mean drop rates for large, mix, and small payloads are 0.55%, 2.59%, and

1.51% respectively and don’t follow any particular trend across factors.

Table 4.3: Attack Detection Related Statistics

Statistic Attack Payload Size Low Value Mean High Value

Large 94.89% 98.92% 100.83%
Mix 91.75% 95.85% 100.04%
Small 95.85% 98.30% 100.04%

Attack Detection
Rate

Large 0.00% 0.55% 3.20%
Mix 0.72% 2.59% 5.15%
Small 0.33% 1.51% 4.55%

Packet Drop Rate

Large 0.00 1.17 5.80
Mix 0.00 3.87 75.50
Small 0.00 1.28 6.40

Undecryptable
Packets (raw)

57

Finally, server keeps a record of packets which it is unable to decrypt. Generally,

the number of undecryptable packets is quite low, sometimes zero or around 5 in 20,000+

packets examined. The only way this occurs is if the replicated SAD does not contain the

right decryption key, in which case decryption cannot be completed. Some transient

behavior is observed in which a host negotiates an IPSec SA and transmits an attack

before the key has been entered into the IDS’ database, in which case server may be

unable to decrypt a handful of packets before the key is present. However, in one

experimental run, a very high number of packets were undecryptable. Specifically, in run

number 7 of experiment 47 (see Appendix A) 564 packets were undecryptable. This is

almost certainly due to the server software missing a transmitted key, or racoon2 failing

to transmit the key to server. The server program is a passive listener for keys and does

not attempt to actively obtain a decryption key from a host on the network, rather it relies

on the hosts to send updated keys proactively. Therefore, if a key transmission somehow

times out or fails, server will not have the means to decrypt any packets until a new key

is generated and updated.

Thus this emphasizes the tradeoff between complete protection and non-

interference. A design decision is made not to provide server a key solicitation capability

due to the possibility it would further load down the network and hosts. If key

solicitation were allowed, perhaps no packets would be “undecryptable.” However, the

penalty on IDS performance as decryption keys are retrieved from a host across a

network can be severe.

58

4.5 IDS Related Traffic

In each experiment, the packet log is analyzed to determine the percentage of

traffic entering or leaving the IDS host. Figures 4.7-4.9 display the results. Since IDS

related traffic in static keying mode is either zero or negligible, it is not displayed in the

figures.

The graphs show that in some cases a very high percentage, up to 58.6%, of

traffic is IDS related. What they don’t show, however, is that the raw throughput due to

the IDS and secret-key sharing framework is very consistent for any keying

mode/network configuration combination across other factors. This is logical, since key

refreshes occur at fixed time intervals (15 seconds, 30 seconds, or never) and for a

specific number of SAs for each configuration. Rather, the amount of non-IDS related

throughput changes and thus affects the percentages shown.

Figure 4.7: Percentage of IDS Related Traffic for Experiments with Large Attack
Payloads

59

Figure 4.8: Percentage of IDS Related Traffic for Experiments with Mixed Attack
Payloads

Figure 4.9: Percentage of IDS Related Traffic for Experiments with Small Attack
Payloads

60

The secret-key sharing framework does generate a fair amount of traffic. The

actual SAD updates are quite small, however they are transmitted over IPSec-secured

channels, which require the standard fare of IKE and IPSec key negotiation traffic. This

is the simplest method of ensuring the encryption keys are afforded the same level of

protection as the data they are meant to protect. However, this method clearly can create

a substantial amount of overhead related to how many hosts are on the network. As

offered load increases between hosts, though, the percentage should drop as SA updates

are time dependent and not throughput dependent. Note that if only one IPSec endpoint

resides on the network local to the IDS, the traffic is cut in half as the remote node will

not be transmitting SA updates to the IDS. Additionally, this traffic could be decreased

by using the UDP protocol to transmit SA updates to the IDS, or by protecting only host-

to-IDS traffic with IPSec, rather than host-to-IDS and IDS-to-host since the return traffic

does not contain any sensitive data.

4.6 IDS CPU Utilization

A primary research focus is to determine what, if any, inferences about the secret-

key sharing framework can be drawn by observing the IDS CPU utilization across

variation of factors. Figures 4.10-4.12 show the mean IDS CPU utilization for the

experimental factors. Depending upon experimental factors, using dynamic keying with

30 second key expiration times increased CPU load by up to 14.5% (relative to static-

keyed experiments), and dynamic keying with 15 second key expiration time increased

the load by up to 20.7%, as determined with the following equation.

61

CPU Utilization with Dynamic Keying –
CPU Utilization with Static Keying % Increase = 100 *
CPU Utilization with Static Keying

 For the most part, the results confirm what should be intuitive. As encryption

percentage is increased, CPU utilization increases. In a few cases, this does not strictly

hold, but the trend is evident. Similarly, as the number of SAs in circulation increases

(expiration times and configurations change), the CPU utilization is slightly higher. In 13

of 30 cases, the mean CPU utilization actually decreased from single configuration to

server. Seeing that server configuration requires more SAs than single, this result is

unexpected. However, there is not a statistical difference at the 95% confidence level, so

that result is more or less inconclusive.

Figure 4.10: Mean IDS CPU Utilization for Experiments with Large Attack Payloads

62

Figure 4.12: Mean IDS CPU Utilization for Experiments with Small Attack Payloads

Figure 4.11: Mean IDS CPU Utilization for Experiments with Mixed Attack Payloads

63

Observing experiments with 0% encryption shows no real trend applying to the

CPU utilization across network configurations when using static keying. This indicates

that performance differences due to configuration changes in the dynamic-keyed

experiments are primarily due to the key exchanges themselves, and not related to

server's operations of retrieving keys from and maintaining the SAD.

In most cases, experiments using dynamic keying with 30 second key expiration

times do not incur enough of a penalty on the CPU to statistically differentiate them from

static-keyed experiments with the same workload characteristics with 95% confidence.

However, in all but three cases there is a statistically significant difference between

static-keyed experiments and dynamic-keyed experiments with 15 second expiration

times. Figures 4.13-4.15 show these measurements with their confidence intervals. On

overlapping confidence intervals, the t-test confirms the statistical difference in all cases

except three. Those inconsistencies are most likely explained by experimental error.

Figure 4.13: Mean IDS CPU Utilization for Experiments with Large Attack Payloads,
Including 95% Confidence Interval

64

Figure 4.15: Mean IDS CPU Utilization for Experiments with Small Attack Payloads,
Including 95% Confidence Interval

Figure 4.14: Mean IDS CPU Utilization for Experiments with Mixed Attack Payloads,
Including 95% Confidence Interval

65

 ANOVA was performed on the CPU utilization metric using Mathematica. Table

4.4 shows a summary of the allocation of variation for each attack payload size. The first

thing to note is the percentage of variation attributed to experimental error. There are a

number of possible explanations for this error. The first is simply the unpredictable

nature of the distributed system and Ethernet network. Although every effort is made to

control the workload, the manner in which it is supplied (at the application layer) leaves

much underlying activity to the whim of the operating system. For example, the TCP

retransmissions discussed in Section 4.5 have a negative effect on the IDS CPU

utilization, as they artificially increase the workload—and those retransmissions,

unfortunately, are seemingly unpredictable. On top of trusting the FreeBSD operating

system and all host-to-host interactions on the Ethernet LAN to act in a perfectly uniform

manner across experiments, the impact of VMWare must also be considered. Although

the FreeBSD guest operating system is installed on top of a clean-install Windows 2000

host, with no extraneous programs running in the background, Windows 2000 is certainly

undergoing a minimal level of activity in the background. Since that activity is ignored

in these experiments, it is likely to introduce some variation which must be attributed to

experimental error. According to the F-ratios shown in Table 4.4, each factor is

significant with 95% confidence except for the third order interaction of key method,

configuration, and percent encryption using small and mixed sized payloads. Not

surprisingly, the largest source of variation in CPU utilization is due to the percentage of

encrypted traffic present in the workload. TripleDES decryption is a cycle-intensive

operation, and without

66

Table 4.4: Analysis of Variance for IDS CPU Utilization

Large Attack Payloads

Factors DF SumOfSq MeanSq F-Ratio F-Table P Value % Variation
km 2 0.010648 0.005324 77.76557 3.01 0 9.56%
pe 3 0.065963 0.021988 321.1613 2.62 0 59.20%
nc 2 0.003907 0.001953 28.53146 3.01 3.86E-12 3.51%

km * nc 4 0.001791 0.000448 6.538755 2.39 4.52E-05 1.61%
km * pe 6 0.004075 0.000679 9.919724 2.12 4.70E-10 3.66%
nc * pe 6 0.001393 0.000232 3.391675 2.12 0.002936 1.25%

km * nc * pe 12 0.001458 0.000122 1.775122 1.77 0.051176 1.31%
Error 324 0.022182 6.85E-05 19.91%
Total 359 0.111416

Mixed Attack Payloads

Factors DF SumOfSq MeanSq F-Ratio F-Table P Value % Variation
km 2 0.006224 0.003112 40.93368 3.01 1.11E-16 7.64%
pe 3 0.042969 0.014323 188.3878 2.62 0 52.76%
nc 2 0.001875 0.000937 12.33028 3.01 6.90E-06 2.30%

km * nc 4 0.000858 0.000214 2.820622 2.39 0.025199 1.05%
km * pe 6 0.002281 0.00038 5.000203 2.12 6.44E-05 2.80%
nc * pe 6 0.001273 0.000212 2.789802 2.12 0.011665 1.56%

km * nc * pe 12 0.001332 0.000111 1.46006 1.77 0.137788 1.64%
Error 324 0.024633 7.6E-05 30.25%
Total 359 0.081445

Small Attack Payloads

Factors DF SumOfSq MeanSq F-Ratio F-Table P Value % Variation
km 2 0.005161 0.00258 41.271 3.01 1.11E-16 7.76%
pe 3 0.033955 0.011318 181.035 2.62 0 51.06%
nc 2 0.0025 0.00125 19.99367 3.01 6.49E-09 3.76%

km * nc 4 0.000729 0.000182 2.914574 2.39 0.021588 1.10%
km * pe 6 0.001855 0.000309 4.943752 2.12 7.38E-05 2.79%
nc * pe 6 0.00165 0.000275 4.397779 2.12 0.000273 2.48%

km * nc * pe 12 0.000392 3.27E-05 0.522266 1.77 0.900064 0.59%
Error 324 0.020257 6.25E-05 30.46%
Total 359 0.066498

Legend

Symbol Factor
km Key Method
pe Percentage of Encrypted Traffic
nc Network Configuration

67

dedicated cryptographic hardware the burden on the CPU increases greatly as more

encrypted packets are encountered. After experimental error, key method is responsible

for the next largest source of variation, however it is only roughly 1/6th as significant as

the percent encryption. Network configuration explains a surprisingly small amount of

variation, as apparently the number of valid SAs in the system does not in itself generate

much overhead on the IDS CPU. The interacting effects of key method and percent

encryption cause some variation, due to the fact that percent encryption directly affects

access to the SAD, whose maintenance is dictated by the key method. Finally, the

interactions of key method with configuration and configuration with percent encryption

are responsible for a small amount of variation.

Though these results cannot be scaled to all situations, they indicate that IDS CPU

performance does not depend significantly on the number of SAs in the database nor the

number of SA updates it is receiving through the secret-key sharing framework.

Although key method is not as significant as percentage of encrypted traffic, any parties

wishing to use this type of secret-key sharing system need to consider the keying method

carefully especially if using dynamic keying, since as key expiration time increases it

becomes more and more like static keying and the difference in IDS performance will be

negligible. If, however, very short key expiration times are used and many SAs are

generated, the IDS performance will suffer increasingly. Drawing from Table 4.4 and the

notions presented in Section 4.3 regarding the goodput to throughput ratio, it seems likely

that increased CPU utilization correlated to key method is due more to the increased key

68

negotiation traffic which the IDS must process than the number of SAs actually in

circulation.

 As a final note, it is important to realize that much of the key negotiation traffic is

due to IKE and IPSec exchanges between hosts, and not directly related to the IDS

computer. Therefore, adding IDS functionality with the secret-key sharing framework to

a network already using IPSec protection with dynamic keying creates only a fraction of

the overhead that it would first appear. The large difference is when the secret-key

sharing framework is added to a network protected only by static keying, in which case

no key negotiation is required at all. Bringing this into context shows that adding an IDS

to an IPSec protected network with dynamic keying may be a very viable option.

4.7 Limitations

This section explores research limitations, and how the experiments could be

improved.

4.7.1 VMWare The use of VMWare eased the setup and execution of the

experiments. However, judging from the high experimental errors this may not have been

the best choice. There are clearly factors influencing the experiments which are not

accounted for, and one such factor likely is the influence of VMWare and the underlying

host operating system, Windows 2000. If each host was running FreeBSD as a native

operating system, then the potential influence would be eliminated.

4.7.2 Throughput Although these experiments provide useful trend data, it is

clear that the framework is not ready for any sort of real world use. Admittedly, as

69

designed the framework was not intended for real world use, however it would be

beneficial to be able to subject it to more demanding workloads for further trend analysis.

One of the more interesting future options is to insert the IDS and secret-key sharing

framework on a larger network with more SA activity, however this would be all but

impossible until the packet dropping issue is resolved.

4.8 Summary

This chapter discussed the results of the experiments described in Chapter 3,

comparing the results of IDS efforts in static-keyed encrypted networks with those in

dynamic-keyed networks using the developed secret-key sharing framework. Though use

of the secret-key sharing framework incurred up to a 20.7% CPU utilization penalty on

the IDS computer, the improved security of dynamic keying over static keying makes

secret-key sharing for IDS an option worth pursuing.

70

5 Conclusions

5.1 Research Contribution

This research, driven by the advent of IPv6, explores a difficult problem

exacerbated by IPv6’s inherent security attributes. A secret-key sharing framework was

developed utilizing new and existing code to enable intrusion detection in an IPv6

enabled network employing IPSec protection. This framework provides a basis for future

research and/or implementation of such a system. Additionally, the experimental results

herein provide insight into the traffic patterns of a LAN using the framework, and the

added burden placed on the IDS host which is already a highly taxed resource in most

networks.

As a byproduct of the primary research goals, a pair of traffic generation

programs, attacknet and attackclient, were created. These programs provide a method for

testing intrusion detection systems from the application layer for up to six network hosts.

The advantage of this type of traffic generation is it allows standard kernel processing

including IPSec. The programs can easily be modified to include any number of hosts, to

permit more strenuous testing.

5.2 Conclusions

Experimental results show that a secret-key sharing framework for protecting

IPSec traffic is a viable option. This is not to say that the particular framework proposed

here, or even the methods employed by the framework, are the “best” options. Rather,

71

despite identified shortcomings of the proposed framework, the relative overhead

imparted on the network and IDS CPU is not overwhelming. The door on such a secret-

key sharing option over static keying, at the very least, is not summarily closed.

To review, the first research goal was to develop the proposed key sharing

framework and that goal was clearly accomplished. Though the workloads presented in

these experiments were not strenuous by today’s standards, the framework effectively

enabled intrusion detection on encrypted traffic with a high level of accuracy.

The second research goal was to provide different workloads to the system and

characterize traffic patterns. Analysis from Chapter 4 indicates that in some

circumstances the framework is responsible for a high percentage of total network

throughput (i.e., star-configured scenarios using small attack payloads, 100% encryption

and dynamic keying with 15 second expiration times showed that nearly 60% of network

traffic was directed to or from the IDS host). That is certainly not desirable performance

for a “low-overhead” framework, though it does provide better performance on more

average workloads such as mixed payloads in the single or server configurations using 30

second key expiration times. In these scenarios, only 10-15% of traffic was IDS related.

The final research goal was to examine the CPU utilization of the IDS host, with

the hypothesis that the packet decryption would be the performance bottleneck. For the

scenarios considered, the hypothesis holds. However, the data also indicates that as LAN

size increases (i.e., the number of SAs being generated over a period of time increases)

this may not always be case. The key method was shown to be responsible for a

significant 7-9% of variation in CPU response, leading to the conclusion that as key

72

traffic steadily increases, the load on the CPU will likewise. While it’s true that the

impact of key method was not as significant as that of the percentage of encrypted traffic,

if the cryptographic operations were offloaded to a coprocessor (a likely event for a high-

throughput network), changes in key method (SA creation rate) becomes the highest

source of variation in CPU load.

5.3 Future Research Ideas

There is much additional research which can be done in this area. Follow-on

research could be performed in some of the following areas.

5.3.1 Key solicitation As mentioned previously, the server was not given the

capability to request keys from hosts on the network, and discarded any packets which it

was unable to decrypt immediately. It would be possible for the server to be reactive to

encountering new SPIs, where it would request new keys from the hosts and cache them

locally. This may not add much of a penalty to the performance of the framework, and at

least would guarantee complete protection.

5.3.2 Higher Throughput and More Hosts If any future work is done with this

specific framework, the packet dropping issue must be resolved. Certainly at this point,

the framework is a nice idea but hardly qualifies as useful due to the low data rates it can

effectively protect. With that problem solved, the framework could be integrated into a

LAN with more hosts to determine the effects of the increased host count and SA

activity.

73

5.3.3 Include Different Operating Systems At the time of this research effort, the

only operating system supporting both IPv6 and IPSec concurrently was FreeBSD and

variants. In the near future, these capabilities will have to be integrated into other

operating systems such as Windows in order for consumers to get the full benefit of IPv6.

At that point, the framework could be ported to these new platforms and performance

evaluated.

 5.3.4 Involve a Cryptographic Coprocessor With cryptographic functions off-

loaded to a coprocessor, this would leave the CPU on the IDS host free to deal solely

with key reception (or solicitation) and intrusion detection functions. Many coprocessor

options are available currently which support data encryption/authentication rates up to

1.0Gbps for IPSec processing [Saf04, Sun04]. This alone could improve the system as a

whole, and make the secret-key sharing idea a more realistic option as decryption proved

to be the bottleneck for these experiments.

 5.3.5 Possible Improvements to server, racoon2, and the General Framework

Certain design decisions were made which were not necessarily the best or most efficient

options. For example, when keys were exchanged with the IDS, both channels of

communication were protected with IPSec (both to and from the IDS). In reality, there is

no secret information transferred from the IDS to a host, so that channel could be left in

the clear somewhat lessening communication burden on the IDS. Additionally, taking

the original racoon implementation of IKE and IPSec as inspiration, the secret-key

sharing traffic could have been accomplished over UDP rather than TCP and possibly

made more efficient.

74

5.3.6 Real-World IDS Integration The custom IDS developed for these

experiments is not a good representation of the capabilities generally available to the

public. Commercial IDS’ and the open-source Snort include features such as stream

assembly and complex rulesets which make them much more effective than a simple per-

packet pattern matching engine. There is no particular reason why the framework

couldn’t be integrated into Snort. The release available at the time of the research did not

support IPv6 traffic other than recognizing it.

75

Appendix A: Experiment Listing

Experiment
Number

Network
Configuration

Percentage
of Encrypted

Traffic

Key
Method

Key
Expiration
Time (sec)

Attack Payload
Size

1 star 33 static n/a small
2 star 33 static n/a mix
3 star 33 static n/a large
4 star 66 static n/a small
5 star 66 static n/a mix
6 star 66 static n/a large
7 star 100 static n/a small
8 star 100 static n/a mix
9 star 100 static n/a large
10 star 33 dynamic 30 small
11 star 33 dynamic 30 mix
12 star 33 dynamic 30 large
13 star 33 dynamic 15 small
14 star 33 dynamic 15 mix
15 star 33 dynamic 15 large
16 star 66 dynamic 30 small
17 star 66 dynamic 30 mix
18 star 66 dynamic 30 large
19 star 66 dynamic 15 small
20 star 66 dynamic 15 mix
21 star 66 dynamic 15 large
22 star 100 dynamic 30 small
23 star 100 dynamic 30 mix
24 star 100 dynamic 30 large
25 star 100 dynamic 15 small
26 star 100 dynamic 15 mix
27 star 100 dynamic 15 large
28 star 0 n/a n/a small
29 star 0 n/a n/a mix
30 star 0 n/a n/a large

76

Experiment
Number

Network
Configuration

Percentage
of Encrypted

Traffic

Key
Method

Key
Expiration
Time (sec)

Attack Payload
Size

32 single 33 static n/a mix
33 single 33 static n/a large
34 single 66 static n/a small
35 single 66 static n/a mix
36 single 66 static n/a large
37 single 100 static n/a small
38 single 100 static n/a mix
39 single 100 static n/a large
40 single 33 dynamic 30 small
41 single 33 dynamic 30 mix
42 single 33 dynamic 30 large
43 single 33 dynamic 15 small
44 single 33 dynamic 15 mix
46 single 66 dynamic 30 small
47 single 66 dynamic 30 mix
48 single 66 dynamic 30 large
49 single 66 dynamic 15 small
50 single 66 dynamic 15 mix
51 single 66 dynamic 15 large
52 single 100 dynamic 30 small
53 single 100 dynamic 30 mix
54 single 100 dynamic 30 large
55 single 100 dynamic 15 small
56 single 100 dynamic 15 mix
57 single 100 dynamic 15 large
58 single 0 n/a n/a small
59 single 0 n/a n/a mix
60 single 0 n/a n/a large

77

Experiment
Number

Network
Configuration

Percentage
of Encrypted

Traffic

Key
Method

Key
Expiration
Time (sec)

Attack Payload
Size

61 server 33 static n/a small
62 server 33 static n/a mix
63 server 33 static n/a large
64 server 66 static n/a small
65 server 66 static n/a mix
66 server 66 static n/a large
67 server 100 static n/a small
68 server 100 static n/a mix
69 server 100 static n/a large
70 server 33 dynamic 30 small
71 server 33 dynamic 30 mix
72 server 33 dynamic 30 large
73 server 33 dynamic 15 small
74 server 33 dynamic 15 mix
75 server 33 dynamic 15 large
76 server 66 dynamic 30 small
77 server 66 dynamic 30 mix
78 server 66 dynamic 30 large
79 server 66 dynamic 15 small
80 server 66 dynamic 15 mix
81 server 66 dynamic 15 large
82 server 100 dynamic 30 small
83 server 100 dynamic 30 mix
84 server 100 dynamic 30 large
85 server 100 dynamic 15 small
86 server 100 dynamic 15 mix
87 server 100 dynamic 15 large
88 server 0 n/a n/a small
89 server 0 n/a n/a mix
90 server 0 n/a n/a large

78

Appendix B: Availability of Source Code and Configuration Files, and Data

Source code and configuration files for server, racoon2, cpumon, attacknet, and

attackclient and all other files related to test bed setup are not included as part of this

document. Additionally, all collected data is not printed in the document but is available.

Interested parties should direct their inquiries to:

Dr. Richard Raines

AFIT/ENG 2950 Hobson Way

Wright-Patterson AFB, OH

45433-7765

79

Bibliography

[Agi01] Agilent Technologies, “Mixed Packet Size Throughput,” 2001,
http://advanced.comms.agilent.com/n2x/docs/insight/2001-
8/TestingTips/1MxdPktSzThroughput.pdf

[Bal99] R. Baldwin, "Improving the Real-Time Performance of a Wireless Local Area

Network," Ph.D. dissertation, Virginia Polytechnic Institute and State
University, Blacksburg, VA, 1999.

[Bro04] Bro Intrusion Detection System, 2004, http://www.bro-ids.org/

[CoM04] S. Convery, D. Miller, “IPv6 and IPv4 Threat Comparison and Best Practice

Evaluation,” March 2004, http://www.seanconvery.com/v6-v4-threats.pdf

[DeH98] S. Deering and R. Hinden, “RFC 2460 - Internet Protocol, Version 6 (IPv6)

Specification,” IETF, December 1998, http://www.ietf.org/rfc/rfc2460.txt

[Eff04] Electronic Frontier Foundation, “Cracking DES,” 2004,

http://www.eff.org/Privacy/Crypto_misc/DESCracker/

[Emi02] Jacqueline Emigh, “IPv6: What You Need to Know,” June 2002,

http://www.networking.earthweb.com/netsp/article.php/1347761

[Eth04] Ethereal – The World’s Most Popular Network Protocol Analyzer, 2004,

http://www.ethereal.com

[Fed04] Federal Financial Institutions Examination Council's Information Security

Booklet, 2004,
http://www.ffiec.gov/ffiecinfobase/booklets/information_secruity/04j_intrusion
_detect%20_response.htm

 [Fre04] FreeBSD-net Mail Archive, Conversation with Guy Helmer, 2004,

http://lists.freebsd.org/pipermail/freebsd-net/2004-February/002863.html

[HaC98] D. Harkins and D. Carrel, “RFC 2409 – The Internet Key Exchange (IKE),”

November 1998, http://www.ietf.org/rfc/rfc2409.txt

[HaM03] P. Harris and R. Mahmood, “A Case Study on Experimental IPv6 IDS,”

presented at Hack in the Box Security Conference, Kuala Lumpur, Malaysia,
2003, http://www.scan-associates.net/papers/hitb2003-ids_ipv6.ppt

[Hei04] M. Heidari, “IPv6 Security Considerations,” September 2004,

http://www.securitydocs.com/download.php?id=2545

80

[Hui96] C. Huitema, IPv6, The New Internet Protocol, New Jersey: Prentice Hall, 1996.

[Iss04] Internet Security Systems, 2004, http://www.iss.com/

[Jav04] Javvin Company, “IPv6 (IPng): Internet Protocol version 6”, 2004,

http://www.javvin.com/protocolIPv6.html

[Kam04] KAME Project, 2004, http://www.kame.net

[KeA98a] S. Kent and R. Atkinson, “RFC 2402 – IP Authentication Header,” November

1998, http://www.ietf.org/rfc/rfc2402.txt

[KeA98b] S. Kent and R. Atkinson, “RFC 2406 – IP Encapsulating Security Payload,”

November 1998, http://www.ietf.org/rfc/rfc2406.txt

[KeA98c] S. Kent and R. Atkinson, “RFC 2401 – Security Architecture for the Internet

Protocol,” November 1998, http://www.ietf.org/rfc/rfc2401.txt

[Kra04] G. Kramer, "On generating self-similar traffic using pseudo-Pareto distribution,"

Technical brief, Department of Computer Science, University of California,
Davis, 2004, http://wwwcsif.cs.ucdavis.edu/~kramer/papers/self_sim.pdf

[Mca04] McAfee Security, “Encrypted Threat Protection: Network IPS for SSL

Encrypted Traffic,” June 2004,
http://www.mcafeesecurity.com/us/_tier2/products/_media/mcafee/wp_encr_th_
prot.pdf

[Mic03] Microsoft Corporation, "Frequently Asked Questions about the IPv6 Protocol for

Windows XP," May 2003,
http://www.microsoft.com/technet/prodtechnol/winxppro/plan/faqipv6.mspx

[Mic04] Microsoft Security Website, 2004, http://www.microsoft.com/security

[Nis04] National Institute of Standards and Technology, “Advanced Encryption Standard

(AES), Data Encryption Standard (DES), Triple-DES, and Skipjack
Algorithms,” 2004, http://csrc.nist.gov/cryptval/des.htm

[Nss04] The NSS Group, “Gigabit Intrusion Detection Systems,” January 2004,

http://www.nss.co.uk/WhitePapers/gigabit_ids.htm

[Pca04] The libpcap Project, 2004, http://sourceforge.net/projects/libpcap/

[Ran02] M. Ranum, “Intrusion Detection: Challenges and Myths,” October 2002,

http://secinf.net/info/ids/ids_mythe.html

81

[Roe04] M. Roesch et al, Snort – The Open Source NIDS, 2004, http://www.snort.org

[Saf04] SafeNet SafeXcel I80-PCI Card Data Sheet, 2004, http://www.safenet-inc.com/

[Sch04] Michael Schorr, “IPv4 and IPv6: A Comparison,” January 2004,

http://myitforum.techtarget.com/articles/16/view.asp?id=6720

[Shi02] R. Shimonski, “What You Need to Know About Intrusion Detection Systems,”

November 2002,
http://www.windowsecurity.com/articles/What_You_Need_to_Know_About_In
trusion_Detection_Systems.html

[Shi03] D. Shindler, “IPv6: Windows Server 2003 Supports a More Secure IP – Sort of,”

November 2003,
http://www.windowsecurity.com/articles/Windows_Server_2003_IPv6.html

[Sou03] SourceForge.net Snort Mail Archives, Conversation with Nigel Hougton, 2003,

http://sourceforge.net/mailarchive/forum.php?forum_id=3972&style=flat&view
day=22&viewmonth=200310

[Sun04] Sun Crypto Accelerator 4000 Board Data Sheet, 2004,

http://www.sun.com/networking

[Tay02] L. Taylor, “Lock IT Down: Intrusion detection is not intrusion prevention,”

August 2002 http://techrepublic.com.com/5100-6264-1051215.html

 [Tri03] A. Triulzi, “Intrusion Detection in IPv6,” Velikonoční kryptologie 2003

[Tro04] Tropical Software, “DES Encryption,” 2004,

http://www.tropsoft.com/strongenc/des.htm

[War03] M. Warfield, “Security Implications of IPv6,” 2003,

http://documents.iss.net/whitepapers/IPv6.pdf

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

21-03-2005
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

September 2003 – March 2005
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

ENABLING INTRUSION DETECTION IN IPSEC PROTECTED IPV6
NETWORKS THROUGH SECRET-KEY SHARING
 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Sweeney, Patrick J., Captain, USAF

 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCE/ENG/05-06

10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Security Agency
Attn: Mr. Ken Shotting, I44
9800 Savage Road
Fort Meade, MD 20755-6744
(410) 854-6761

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
 As the Internet Protocol version 6 (IPv6) implementation becomes more widespread, the IP Security (IPSec)
features embedded into the next-generation protocol will become more accessible than ever. Though the network-
layer encryption provided by IPSec is a boon to data security, its use renders standard network intrusion detection
systems (NIDS) useless. The problem of performing intrusion detection on encrypted traffic has been addressed by
differing means with each technique requiring one or more static secret keys to be shared with the NIDS beforehand.
The problem with this approach is static keying is much less secure than dynamic key generation through the Internet
Key Exchange (IKE) protocol.
 This research creates and evaluates a secret-key sharing framework which allows both the added security of
dynamic IPSec key generation through IKE, and intrusion detection capability for a NIDS on the network. Analysis
shows that network traffic related to secret-key sharing with the proposed framework can account for up to 58.6% of
total traffic in the worst case scenario, though workloads which are arguably more average decrease that traffic to
10-15%. Additionally, actions associated with IKE and secret-key sharing increase CPU utilization on the NIDS up
to 20.7%. Results show, at least in limited implementations, a secret-key sharing framework provides robust
coverage and is a viable intrusion detection option.
15. SUBJECT TERMS
 Intrusion detection, communications protocols, computer security, secure communications, IPv6

16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
Dr. Richard A. Raines, AFIT/ENG

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
 OF
 PAGES

95

19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4278
(Richard.Raines@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	AIR FORCE INSTITUTE OF TECHNOLOGY
	
	Acknowledgments
	 Table of Contents
	List of Figures
	List of Tables
	Abstract
	Appendix A: Experiment Listing
	 Appendix B: Availability of Source Code and Configuration Files, and Data
	Bibliography

